Ukr.Biochem.J. 2025; Volume 97, Issue 5, Sep-Oct, pp. 72-87
doi: https://doi.org/10.15407/ubj97.05.072
Proteins of plasminogen/plasmin system: multifaceted roles in health and disease
A. O. Tykhomyrov*, O. I. Yusova, L. G. Kapustianenko, I. I. Patalakh,
T. A. Yatsenko, V. L. Bilous, T. V. Grynenko
Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine,
Department of Enzyme Chemistry and Biochemistry, Kyiv;
*e-mail: artem_tykhomyrov@ukr.net
Received: 20 April 2025; Revised: 02 June 2025;
Accepted: 30 October 2025; Available on-line: 02 December 2025
The plasminogen/plasmin (Pg/Pm) system is a cornerstone of various biological processes, encompassing roles in fibrinolysis, angiogenesis, inflammation, wound healing, and tumor biology. This review consolidates knowledge on the multifaceted functions of the Pg/Pm system proteins in health and disease, highlighting historical developments, recent advancements, and the contributions of the Department of Enzyme Chemistry and Biochemistry to the understanding of their molecular mechanisms of function. We have explored the regulation of fibrinolysis and its intricate interplay with proteins of the Pg/Pm system, delving into their pivotal role in hemostatic balance. Reciprocal interactions between Pg/Pm system proteins and platelets underscore their contribution to thrombosis, fibrinolysis, inflammation, and vascular remodeling. In oncology, Pg/Pm system proteins orchestrate tumor growth and metastasis through their involvement in extracellular matrix remodeling, angiogenesis, and cancer cell survival. However, angiostatins – proteolytically-derived fragments of Pg/Pm – emerge as multifunctional polypeptides, which are known to affect cell migration, angiogenesis, and inflammation, suppress tumor growth and metastasis. Contribution of Pg/Pm to reparative processes, including wound healing, further emphasizes their therapeutic potential in regenerative medicine. Moreover, these proteins play crucial roles in ocular health, where their dysregulation may lead to the pathogenesis of ophthalmic diseases. In conclusion, advancement of our understanding of this versatile system functions through continued research is pivotal for applications of these proteins as diagnostic and prognostic biomarkers for cardiovascular disorders, inflammatory pathologies, cancer, autoimmune conditions, and various diabetic complications, offering insights into early detection of disease and development of innovative therapeutic strategies, ultimately driving progress in personalized medicine.
Keywords: angiostatins, cancer, cardiovascular disorders, fibrinolysis, ocular diseases, plasminogen/plasmin system, platelets, proteolysis, wound healing
References:
- Tsyperovych AS. About the mechanism of protein denaturation. IV. Post-denaturation changes in protein molecules. Scheme of the denaturation process. Ukr Biokhim Zhurn. 1951;23(1):67-75. (In Ukrainian).
- Vynogradova RP, Kolodzeiska MV. Oleksander Solomonovych Tsyperovich a gifted enzymologist, scientist and practician. Ukr Biokhim Zhurn. 2007;79(5):6-26. (In Ukrainian). PubMed
- Kudinov SO, Eretska EV, Pozdnyakova TM, Panchenko NE, Matsuy SP, Babenko IM. Affined sorbents for obtaining plasminogen. Ukr Biokhim Zhurn. 1979;51(4):330-334. (In Russian). PubMed
- Zhernossekov DD, Yusova EI, Grinenko TV. Role of plasminogen/plasmin in functional activity of blood cells. Ukr Biokhim Zhurn. 2012;84(4):5-19. (In Russian).
- Lugovskoy E.V., Makogonenko E.M., Komisarenko S.V. Molecular mechanisms of fibrin formation and degradation. Kyiv: Naukova Dumka, 2013. 230 p.
- Franchini M, Zaffanello M, Mannucci PM. Bleeding disorders in primary fibrinolysis. Int J Mol Sci. 2021;22(13):7027. PubMed, PubMedCentral, CrossRef
- Verevka SV, Grinenko TV. Pseudo-functional interactions of plasminogen: molecular mechanisms and pathologic appearance. In: Advances in Medicine and Biology. (Berhardt L.V., Ed.), NY-Nova Science Publishers, 2011;34:35-62.
- Yatsenko TA, Rybachuk VМ, Yusova OI, Kharchenko SM, Grinenko TV. Effect of fibrin degradation products on fibrinolytic process. Ukr Biochem J. 2016; 88(2):16-24. PubMed, CrossRef
- Grinenko TV, Kapustianenko LG, Yatsenko TA, Yusova OI, Rybachuk VN. Plasminogen fragments K 1-3 and K 5 bind to different sites in fibrin fragment DD. Ukr Biochem J. 2016; 88(3):36-45. PubMed, CrossRef
- Kapustianenko LG, Iatsenko TA, Iusova OI, Grinenko TV. Isolation and purification of a kringle 5 from human plasminogen using AH-Sepharose. Biotechnol Acta. 2014;7(4):35-42. CrossRef
- Kapustianenko L, Grinenko T, Rebriev A, Tykhomyrov A. The sequence 581Ser-610Val in the fibrinogen Aα chain is responsible for the formation of complexes between plasminogen and αC-regions of fibrin(ogen). Heliyon. 2024;10(23):e40852. PubMed, PubMedCentral, CrossRef
- Cao Y, Ji RW, Davidson D, Schaller J, Marti D, Söhndel S, McCance SG, O’Reilly MS, Llinás M, Folkman J. Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J Biol Chem. 1996;271(46):29461-29467. PubMed, CrossRef
- O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994;79(2):315-328. PubMed, CrossRef
- Sim BK, MacDonald NJ, Gubish ER. Angiostatin and endostatin: endogenous inhibitors of tumor growth. Cancer Metastasis Rev. 2000;19(1-2):181-190. PubMed, CrossRef
- Wahl ML, Moser TL, Pizzo SV. Angiostatin and anti-angiogenic therapy in human disease. Recent Prog Horm Res. 2004;59:73-104. PubMed, CrossRef
- Yang X, Cai W, Xu Z, Chen J, Li C, Liu S, Yang Z, Pan Q, Li M, Ma J, Gao G. High efficacy and minimal peptide required for the anti-angiogenic and anti-hepatocarcinoma activities of plasminogen K5. J Cell Mol Med. 2010;14(10):2519-2530. PubMed, PubMedCentral, CrossRef
- Chen YH, Wu HL, Chen CK, Huang YH, Yang BC, Wu LW. Angiostatin antagonizes the action of VEGF-A in human endothelial cells via two distinct pathways. Biochem Biophys Res Commun. 2003;310(3):804-810. PubMed, CrossRef
- Wajih N, Sane DC. Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells. Blood. 2003;101(5):1857-1863. PubMed, CrossRef
- Ansell PJ, Zhang H, Davidson DJ, Harlan JE, Xue J, Brodjian S, Lesniewski R, McKeegan E. Recombinant kringle 5 from plasminogen antagonises hepatocyte growth factor-mediated signalling. Eur J Cancer. 2010;46(5):966-973. PubMed,CrossRef
- Gonzalez-Gronow M, Kalfa T, Johnson CE, Gawdi G, Pizzo SV. The voltage-dependent anion channel is a receptor for plasminogen kringle 5 on human endothelial cells. J Biol Chem. 2003;278(29):27312-27318. PubMed, CrossRef
- Ma J, Li C, Shao C, Gao G, Yang X. Decreased K5 receptor expression in the retina, a potential pathogenic mechanism for diabetic retinopathy. Mol Vis. 2012;18:330-336. PubMed, PubMedCentral
- Kato K, Miyake K, Igarashi T, Yoshino S, Shimada T. Human immunodeficiency virus vector-mediated intra-articular expression of angiostatin inhibits progression of collagen-induced arthritis in mice. Rheumatol Int. 2005;25(7):522-529. PubMed, CrossRef
- Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E, Lo KM, Gillies S, Javaherian K, Folkman J. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA. 2003;100(8):4736-4741. PubMed, PubMedCentral, CrossRef
- Matsunaga T, Chilian WM, March K. Angiostatin is negatively associated with coronary collateral growth in patients with coronary artery disease. Am J Physiol Heart Circ Physiol. 2005;288(5):H2042-H2046. PubMed, CrossRef
- Radziwon-Balicka A, Moncada de la Rosa C, Zielnik B, Doroszko A, Jurasz P. Temporal and pharmacological characterization of angiostatin release and generation by human platelets: implications for endothelial cell migration. PLoS One. 2013;8(3):e59281. PubMed, PubMedCentral, CrossRef
- Tykhomyrov AA, Nedzvetsky VS, Ağca CA, Korsa VV, Grinenko TV. Plasminogen and its fragments in rat brain: a plausible role for astrocytes in angiostatin generation. Ukr Biochem J. 2017;89(2):43-54. CrossRef
- Chavakis T, Athanasopoulos A, Rhee JS, Orlova V, Schmidt-Wöll T, Bierhaus A, May AE, Celik I, Nawroth PP, Preissner KT. Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood. 2005;105(3):1036-1043. PubMed, CrossRef
- Perri SR, Annabi B, Galipeau J. Angiostatin inhibits monocyte/macrophage migration via disruption of actin cytoskeleton. FASEB J. 2007;21(14):3928-3936. PubMed, CrossRef
- Bilous VL, Kapustianenko LG, Tykhomyrov AA. Production and application of angiostatins for the treatment of ocular neovascular diseases. Biotech Acta. 2021;14(1):5-24. CrossRef
- Napolitano F, Montuori N. Role of plasminogen activation system in platelet pathophysiology: emerging concepts for translational applications. Int J Mol Sci. 2022;23(11):6065. PubMed, PubMedCentral, CrossRef
- Huebner BR, Moore EE, Moore HB, Stettler GR, Nunns GR, Lawson P, Sauaia A, Kelher M, Banerjee A, Silliman CC. Thrombin Provokes Degranulation of Platelet α-Granules Leading to the Release of Active Plasminogen Activator Inhibitor-1 (PAI-1). Shock. 2018;50(6):671-676. PubMed, PubMedCentral, CrossRef
- Yusova OI, Grinenko TV, Drobot’ko TF, Tykhomyrov AO. Plasminogen influence on the PAI-1 release by human platelets. Ukr Biochem J. 2024;96(3):13-21. CrossRef
- Scridon A. Platelets and their role in hemostasis and thrombosis-from physiology to pathophysiology and therapeutic implications. Int J Mol Sci. 2022;23(21):12772. PubMed, PubMedCentral, CrossRef
- Patalakh I, Revka O, Gołaszewska A, Bielicka N, Misztal T. Integration of clotting and fibrinolysis: central role of platelets and factor XIIIa. Biosci Rep. 2024;44(9):BSR20240332. PubMed, PubMedCentral, CrossRef
- Talbot K, Meixner SC, Pryzdial EL. Enhanced fibrinolysis by proteolysed coagulation factor Xa. Biochim Biophys Acta. 2010;1804(4):723-730. PubMed, CrossRef
- Roka-Moya YM, Zhernossekov DD, Grinenko TV. Plasminogen/plasmin influence on platelet aggregation. Biopolym Cell. 2012;28(5):352-356. CrossRef
- Tykhomyrov AA, Zhernosekov DD, Roka-Moya YM, Diordieva SI, Grinenko TV. Effects of Lys-form of plasminogen on platelet actin cytoskeleton. Fiziol Zh. 2014;60(1):25-33. (In Ukrainian). PubMed, CrossRef
- Tykhomyrov AA, Zhernosekov DD, Roka-Moya YM, Diordieva SI, Grinenko TV. The effects of Lys-plasminogen on human platelet secretion. Fiziol Zh. 2015;61(6):26-34. (In Ukrainian). PubMed, CrossRef
- Arisato T, Hashiguchi T, Sarker KP, Arimura K, Asano M, Matsuo K, Osame M, Maruyama I. Highly accumulated platelet vascular endothelial growth factor in coagulant thrombotic region. J Thromb Haemost. 2003;1(12):2589-2593. PubMed, CrossRef
- Tykhomyrov AA, Zhernosekov DD, Grinenko TV. Plasminogen modulates formation and release of platelet angiogenic regulators. Ukr Biochem J. 2020;92(1):31-40. CrossRef
- Radziwon-Balicka A, Ramer C, Moncada de la Rosa C, Zielnik-Drabik B, Jurasz P. Angiostatin inhibits endothelial MMP-2 and MMP-14 expression: a hypoxia specific mechanism of action. Vascul Pharmacol. 2013;58(4):280-291. PubMed, CrossRef
- Italiano JE Jr, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J, Klement GL. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008;111(3):1227-1233. PubMed, PubMedCentral, CrossRef
- Tykhomyrov AA, Zhernossekov DD, Grinenko TV. Surface-exposed actin binds plasminogen on the membrane of agonist-activated platelets: a flow cytometry study. Biopolym Cell. 2017;33(3):172-182. CrossRef
- Mahmood N, Mihalcioiu C, Rabbani SA. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): diagnostic, prognostic, and therapeutic applications. Front Oncol. 2018;8:24. PubMed, PubMedCentral, CrossRef
- Morrow GB, Whyte CS, Mutch NJ. A serpin with a finger in many PAIs: PAI-1’s central function in thromboinflammation and cardiovascular disease. Front Cardiovasc Med. 2021;8:653655. PubMed, PubMedCentral, CrossRef
- Yarmolinsky J, Bordin Barbieri N, Weinmann T, Ziegelmann PK, Duncan BB, Inês Schmidt M. Plasminogen activator inhibitor-1 and type 2 diabetes: a systematic review and meta-analysis of observational studies. Sci Rep. 2016;6:17714. PubMed, PubMedCentral, CrossRef
- Pavlov M, Ćelap I. Plasminogen activator inhibitor 1 in acute coronary syndromes. Clin Chim Acta. 2019;491:52-58. PubMed, CrossRef
- Utility model patent No. u202103403. IPC: G01N 33/50 (2006.01), G01N 33/52 (2006.01), G01N 33/68 (2006.01). [Method for determining the activity of plasminogen activator inhibitor type 1] / Yatsenko T.A., Rybachuk V.M., Kharchenko S.M., Shkrabak M.O., Grynenko T.V., Tykhomyrov A.O., applicant and patent holder – Palladin Institute of Biochemistry of the NAS of Ukraine, application date: June 17, 2021. State registration certificate No. 13522/ZU/21 dated October 21, 2021.
Ukrainian. - Kuryata O, Sirenko O, Tykhomyrov A, Yatsenko T. Plasminogen activator inhibitor-1 and circulating ceruloplasmin levels in men with iron-deficiency anemia and heart failure with concomitant prostate cancer and their dynamics after treatment. J Med Sci. 2022;42(2):72-80. CrossRef
- Yatsenko T, Rios R, Nogueira T, Takahashi S, Tabe Y, Naito T, Takahashi K, Hattori K, Heissig B. Urokinase-type plasminogen activator and plasminogen activator inhibitor-1 complex as a serum biomarker for COVID-19. Front Immunol. 2024;14:1299792. PubMed, PubMedCentral, CrossRef
- Yatsenko T, Rios R, Nogueira T, Salama Y, Takahashi S, Adachi E, Tabe Y, Hattori N, Osada T, Naito T, Takahashi K, Hattori K, Heissig B. The influence of 4G/5G polymorphism in the plasminogen-activator-inhibitor-1 promoter on COVID-19 severity and endothelial dysfunction. Front Immunol. 2024;15:1445294. PubMed, PubMedCentral, CrossRef
- Fujimura T. Significance of PAI-1 on the development of skin cancer: optimal targets for cancer therapies. Biomed J. 2025:100850.
- Hasegawa M, Tone S, Wada H, Naito Y, Matsumoto T, Yamashita Y, Shimaoka M, Sudo A. The Evaluation of Hemostatic Abnormalities Using a CWA-Small Amount Tissue Factor Induced FIX Activation Assay in Major Orthopedic Surgery Patients. Clin Appl Thromb Hemost. 2021;27:10760296211012094. PubMed, PubMedCentral, CrossRef
- Patalakh II, Revka OV, Kuchmenko OB, Matova OO, Drobotko TF, Grinenko TV. Clot formation and lysis in platelet rich plasma of healthy donors and patients with resistant hypertension. Ukr Biochem J. 2018;90(2):67-75. CrossRef
- Patalakh I, Wandersee A, Schlüter J, Erdmann M, Hackstein H, Cunningham S. Influence of the immune checkpoint inhibitors on the hemostatic potential of blood plasma. Transfus Med Hemother. 2024;52(2):120-131. PubMed, PubMedCentral, CrossRef
- Patalakh II, Ryabenko DV, Kornilina EM, Kudinov SA. Protein C in regulation of blood plasma fibrinolytic potential in patients with chronic heart failure. Circulation Haemostasis. 2009;(3-4):95-101. (In Ukrainian).
- Patalakh II, Lutai MI, Gavrilenko TI, Lomanovsky ON, Kornilina YeM, Shkrabak MA, Kudinov SA. Activity of the fibrinolytic system in patients with stable angina pectoris with signs of inflammation. Lab Diagnost. 2007;4(42):14-19. (In Ukrainian).
- Tykhomyrov AA, Vovchuk IL, Grinenko TV. Plasminogen and angiostatin levels in female benign breast lesions. Ukr Biochem J. 2015;87(5):103-112. PubMed, CrossRef
- Tykhomyrov AO, Sirenko OYu, Kuryata OV. Circulating levels of potential markers of ischemic stroke in patients with the different forms of atrial fibrillation and chronic heart failure. Ukr Biochem J. 2024;96(2):62-74. CrossRef
- Tykhomyrov AA, Kushnir YuS, Nedzvetsky VS, Grinenko TV, Kuryata OV. Citicoline affects serum angiostatin and neurospecific protein levels in patients with atrial fibrillation and ischemic stroke. Ukr Biochem J. 2019;91(5):34-45. CrossRef
- Tykhomyrov AA, Nedzvetsky VS, Bardachenko NI, Grinenko TV, Kuryata OV. Statin treatment decreases serum angiostatin levels in patients with ischemic heart disease. Life Sci. 2015;134:22-29. PubMed, CrossRef
- Tykhomyrov AA, Nedzvetsky VS, Zabida AA, Ağca CA, Kuryata OV. l-Arginine treatment improves angiogenic response and reduces matrix metalloproteinase activity in chronic heart failure patients with coronary artery disease. PharmaNutrition. 2018;6(4):137-146. CrossRef
- Heissig B, Salama Y, Osada T, Okumura K, Hattori K. The multifaceted role of plasminogen in cancer. Int J Mol Sci. 2021;22(5):2304. PubMed, PubMedCentral, CrossRef
- Chi SL, Pizzo SV. Angiostatin is directly cytotoxic to tumor cells at low extracellular pH: a mechanism dependent on cell surface-associated ATP synthase. Cancer Res. 2006;66(2):875-882. PubMed, CrossRef
- Chang YC, Wu CZ, Cheng CW, Chen JS, Chang LC. Redrawing urokinase receptor (uPAR) signaling with cancer driver genes for exploring possible anti-cancer targets and drugs. Pharmaceuticals (Basel). 2023;16(10):1435. PubMed, PubMedCentral, CrossRef
- Bharadwaj AG, Kempster E, Waisman DM. The ANXA2/S100A10 Complex-regulation of the oncogenic plasminogen receptor.
Biomolecules. 2021;11(12):1772. PubMed, PubMedCentral, CrossRef - Tykhomyrov AA, Nedzvetsky VS, Aĝca CA, Guzyk MM, Korsa VV, Grinenko TV. Plasminogen/plasmin affects expression of glycolysis regulator TIGAR and induces autophagy in lung adenocarcinoma A549 cells. Exp Oncol. 2020;42(4):270-276. PubMed, CrossRef
- Kubala MH, DeClerck YA. The plasminogen activator inhibitor-1 paradox in cancer: a mechanistic understanding. Cancer Metastasis Rev. 2019;38(3):483-492. PubMed, PubMedCentral, CrossRef
- Suh YS, Yu J, Kim BC, Choi B, Han TS, Ahn HS, Kong SH, Lee HJ, Kim WH, Yang HK. Overexpression of plasminogen activator inhibitor-1 in advanced gastric cancer with aggressive lymph node metastasis. Cancer Res Treat. 2015;47(4):718-726. PubMed, PubMedCentral, CrossRef
- Zheng Y, Meng L, Qu L, Zhao C, Wang L, Liu C, Shou C. Anti-PAI-1 monoclonal antibody inhibits the metastasis and growth of esophageal squamous cell carcinoma. J Cancer. 2023;14(1):114-128. PubMed, PubMedCentral, CrossRef
- Li WY, Chong SS, Huang EY, Tuan TL. Plasminogen activator/plasmin system: a major player in wound healing? Wound Repair Regen. 2003;11(4):239-247. PubMed, CrossRef
- Fallah M, Viklund E, Bäckman A, Brodén J, Lundskog B, Johansson M, Blomquist M, Wilczynska M, Ny T. Plasminogen is a master regulator and a potential drug candidate for the healing of radiation wounds. Cell Death Dis. 2020;11(3):201. PubMed, PubMedCentral, CrossRef
- Romer J, Bugge TH, Pyke C, Lund LR, Flick MJ, Degen JL, Dano K. Impaired wound healing in mice with a disrupted plasminogen gene. Nat Med. 1996;2(3):287-292. PubMed, CrossRef
- Shen Y, Guo Y, Mikus P, Sulniute R, Wilczynska M, Ny T, Li J. Plasminogen is a key proinflammatory regulator that accelerates the healing of acute and diabetic wounds. Blood. 2012;119(24):5879-5887. PubMed, CrossRef
- Al Kayal T, Buscemi M, Cavallo A, Foffa I, Soldani G, Losi P. Plasminogen-Loaded Fibrin Scaffold as Drug Delivery System for Wound Healing Applications. Pharmaceutics. 2022;14(2):251. PubMed, PubMedCentral, CrossRef
- Petrenko O, Badziukh S, Korsa V, Kolosovych I, Tykhomyrov A. Topical application of autologous plasma-derived plasminogen accelerates healing of chronic foot ulcers in type 2 diabetes patients. Int J Low Extrem Wounds. 2024;15347346241256025. PubMed, CrossRef
- Decker RW, Parker JM, Lorber J, Crea R, Thibaudeau K. Nonhealing surgical wounds in a patient with plasminogen deficiency type 1 successfully treated with intravenous plasminogen: a case report. Adv Skin Wound Care. 2024;37(7):387-391. PubMed, CrossRef
- Smith E, Hoffman R. Multiple fragments related to angiostatin and endostatin in fluid from venous leg ulcers. Wound Repair Regen. 2005;13(2):148-157. PubMed, CrossRef
- Petrenko OM, Tykhomyrov AA. Levels of angiogenic regulators and MMP-2, -9 activities in Martorell ulcer: a case report. Ukr Biochem J. 2019;91(1):100-107. CrossRef
- Rebalka IA, Raleigh MJ, D’Souza DM, Coleman SK, Rebalka AN, Hawke TJ. Inhibition of PAI-1 via PAI-039 improves dermal wound closure in diabetes. Diabetes. 2015;64(7):2593-2602. PubMed, CrossRef
- Gong Y, Zhao Y, Li Y, Fan Y, Hoover-Plow J. Plasminogen regulates cardiac repair after myocardial infarction through its noncanonical function in stem cell homing to the infarcted heart. J Am Coll Cardiol. 2014;63(25 Pt A):2862-2872. PubMed, PubMedCentral, CrossRef
- Wang L, Yao L, Duan H, Yang F, Lin M, Zhang R, He Z, Ahn J, Fan Y, Qin L, Gong Y. Plasminogen regulates fracture repair by promoting the functions of periosteal mesenchymal progenitors. J Bone Miner Res. 2021;36(11):2229-2242. PubMed, PubMedCentral, CrossRef
- Sepehri E, Tideholm B, Hellström S, Berglin CE. Plasminogen – safe for treatment of chronic tympanic membrane perforation: a phase 1 randomized, placebo-controlled study. Acta Otolaryngol. 2024;144(7-8):439-445. PubMed, CrossRef
- Collinge JE, Simirskii VN, Duncan MK. Expression of tissue plasminogen activator during eye development. Exp Eye Res. 2005;81(1):90-96. PubMed, CrossRef
- Leonardi A, Brun P, Sartori MT, Cortivo R, Dedominicis C, Saggiorato G, Abatangelo G, Secchi AG. Urokinase plasminogen activator, uPa receptor, and its inhibitor in vernal keratoconjunctivitis. Invest Ophthalmol Vis Sci. 2005;46(4):1364-1370. PubMed, CrossRef
- Caputo R, Shapiro AD, Sartori MT, Leonardi A, Jeng BH, Nakar C, Di Pasquale I, Price FW Jr, Thukral N, Suffredini AL, Pino L, Crea R, Mathew P, Calcinai M. Treatment of ligneous conjunctivitis with plasminogen eyedrops. Ophthalmology. 2022;129(8):955-957. PubMed, CrossRef
- Lei H, Velez G, Hovland P, Hirose T, Kazlauskas A. Plasmin is the major protease responsible for processing PDGF-C in the vitreous of patients with proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 2008;49(1):42-48. PubMed, PubMedCentral, CrossRef
- Dan J, Belyea D, Gertner G, Leshem I, Lusky M, Miskin R. Plasminogen activator inhibitor-1 in the aqueous humor of patients with and without glaucoma. Arch Ophthalmol. 2005;123(2):220-224. PubMed, CrossRef
- McClintock M, MacCumber MW. Lowered intraocular pressure in a glaucoma patient after intravitreal injection of ocriplasmin. Clin Ophthalmol. 2015;9:1995-1998. PubMed, PubMedCentral, CrossRef
- Vandewalle E, Van Bergen T, Van de Veire S, Moons L, Stalmans I. Microplasmin as an antiscarring agent for glaucoma surgery: translation into clinical application. Bull Soc Belge Ophtalmol. 2011;(317):63-64. PubMed
- Gabison E, Chang JH, Hernández-Quintela E, Javier J, Lu PC, Ye H, Kure T, Kato T, Azar DT. Anti-angiogenic role of angiostatin during corneal wound healing. Exp Eye Res. 2004;78(3):579-589. PubMed, CrossRef
- Sack RA, Beaton AR, Sathe S. Diurnal variations in angiostatin in human tear fluid: a possible role in prevention of corneal neovascularization. Curr Eye Res. 1999;18(3):186-193. PubMed, CrossRef
- Ambati BK, Joussen AM, Ambati J, Moromizato Y, Guha C, Javaherian K, Gillies S, O’Reilly MS, Adamis AP. Angiostatin inhibits and regresses corneal neovascularization. Arch Ophthalmol. 2002;120(8):1063-1068. PubMed, CrossRef
- Drixler TA, Borel Rinkes IH, Ritchie ED, Treffers FW, van Vroonhoven TJ, Gebbink MF, Voest EE. Angiostatin inhibits pathological but not physiological retinal angiogenesis. Invest Ophthalmol Vis Sci. 2001;42(13):3325-3330. PubMed
- Bilous VI, Tykhomyrov AO. Multiple effects of angiostatins in injured cornea. Ukr Biochem J. 2024;96(1):37-48. CrossRef
- Bilous VI, Greben NK, Gavryliak IV, Ağca CA. Beneficial effects of angiostatin K1-3 and lactoferrin in alkali-burned rabbit cornea: a comparative study. Biotechnologia Acta. 2024;17(3):47-58. CrossRef
- Bilous VL, Kapustianenko LG, Yusova OI, Korsa VV, Nedzvetsky VS, Ağca CA, Ziablitsev SV, Tykhomyrov AO. Angiostatins modulate ACE2 and GFAP levels in injured rat cornea and do not affect viability of retinal pigment epithelial cells. Biopolym Cell. 2023;39(4): 299-310. CrossRef
- Igarashi T, Miyake K, Kato K, Watanabe A, Ishizaki M, Ohara K, Shimada T. Lentivirus-mediated expression of angiostatin efficiently inhibits neovascularization in a murine proliferative retinopathy model. Gene Ther. 2003;10(3):219-226. PubMed, CrossRef
- Raisler BJ, Berns KI, Grant MB, Beliaev D, Hauswirth WW. Adeno-associated virus type-2 expression of pigmented epithelium-derived factor or Kringles 1-3 of angiostatin reduce retinal neovascularization. Proc Natl Acad Sci USA. 2002;99(13):8909-8914. PubMed, PubMedCentral, CrossRef
- Guzyk MM, Tykhomyrov AA, Nedzvetsky VS, Prischepa IV, Grinenko TV, Yanitska LV, Kuchmerovska TM. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors reduce reactive gliosis and improve angiostatin levels in retina of diabetic rats. Neurochem Res. 2016;41(10):2526-2537. PubMed, CrossRef
This work is licensed under a Creative Commons Attribution 4.0 International License.







