Category Archives: Uncategorized

Evaluation of serum adenosine deaminase and its isoenzymes in patients with ovarian cancer

A. Asadi1, S. M. Atyabi2, S. Sadeghi3, S. Khatami3,  M. Ebrahimi-Rad3, S. Valadbeigi3, R. Saghiri3

1Islamic Azad University North Tehran Branch, Tehran, Iran;
2Nanotechnology Department, Pasteur Institute of Iran, Tehran;
e-mail: m_atiyabi@pasteur.ac.ir;
3Biochemistry Department, Pasteur Institute of Iran, Tehran;
e-mail: saghiri@pasteur.ac.ir

Ovarian cancer is the most lethal gynecological cancer worldwide. There are great relationships between the activities of adenosine deaminase (ADA), one of the enzymes in purine nucleotide pathway and carcinogenic process.  In the present study the activities of the total ADA, ADA1 and ADA2 were measured in the sera of the patients with ovarian cancer. In this study, activities of tADA, ADA1 and ADA2 were assessed in sera of 30 patients with ovarian cancer and 30 normal control individuals, using a modified Ellis method in which only ADA2 activity was measured in the present of a specific inhibitor, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA). Our results showed that the tADA, ADA1, and ADA2 serum activities of patients were found to be significantly increased (P < 0.05) than those of healthy control group. Although, ADA and its isoenzymes were not the specific markers for diagnosis of ovarian cancer, measurement of their activities may be used as a diagnostic means in ovarian cancer as well as the other analytical procedures.

Nitrate and nitrite in drinking water affect antioxidant enzymes in erythrocytes of rats

E. Sierra-Campos1, M. A. Valdez-Solana1, M. I. Campos-Almazán1,
C. Avitia-Domínguez2, J. L. Hernández-Rivera1, J. A. De Lira-Sánchez1,
G. Garcia-Arenas3, A. Téllez-Valencia2

1Faculty of Chemical Sciences, Campus Gómez Palacio, University Juarez of Durango State, Gomez Palacio, Durango, Mexico;
e-mail: ericksier@gmail.com;
2Faculty of Medicine and Nutrition, Campus Durango, University Juarez of Durango State, Durango, Mexico;
3Faculty of Health Sciences, Campus Gómez Palacio, University Juarez of Durango State, Gomez Palacio, Durango, Mexico

The present study evaluated the effect of short term intake of nitrite and nitrate drinking water on the antioxidant system and membrane damage of rat erythrocytes. Wistar rats were randomly divided into three groups as follows; the group I received only distilled water ad libitum; the group II was given water with nitrate (a dose of 124 mg/kg of nitrate-nitrogen) as drinking water and the group III was given nitrites dissolved in distilled water in a dose of 150 mg/kg for 7 days. At the end of the study, group III rats showed a significant decrease in activities of glutathione peroxidase (GPx), glucose 6-phosphate dehydrogenase (G6PDH) and catalase (CAT), while in group II rats, the activity of GPx and CAT were significantly reduced, but no significant changes in glutathione reductase activity and peroxynitrite levels were observed. On the other hand, malondialdehyde (MDA) was increased in both groups with respect to group I. Also, our major results indicate that all treatments changed methemoglobin levels and osmotic fragility in comparison to group I rats. The intensity of alterations was found more severe in rats of group III, followed by rats of group II. It can be concluded from these observations that nitrate or nitrite leads to alterations in the erythrocytes antioxidant defense status mainly throughout NADPH relate enzymes.

Effect of trifluoroethanol on antibody reactivity against corresponding and nonrelated antigens

S. A. Bobrovnik, M. O. Demchenko, S. V. Komisarenko

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: s-bobrov@ukr.net

The ability of antibodies to switch between specific and nonspecific recognition of antigens under various factors is the key issue. Here we demonstrate that 2,2,2-trifluoroethanol (TFE) is one of these factors influencing the ability of monoclonal antibodies to react specifically with corresponding antigen (ovalbumin) and transforming them into polyreactive immunoglobulins (PRIGs) that are strong but nonspecific binders with various antigens. Such switching of antibody reactivity is nonlinear and even nonmonotonous function of TFE concentration and depends strongly on incubation time and temperature. At room temperatures (25 °C) the specific antibodies under 30% TFE action are transformed into PRIGs. However, at 0 °C the variation of antibody reactivity is complicated. TFE is known as the alcohol with one of the strongest proton-donor abilities in hydrogen bonding and its effect is probably in binding to specific sites that switch the antibody recognition ability.

Isolation of κ-CN-1P and β-CN-5Р fractions from native casein micelles

V. G. Yukalo, L. A. Storozh

Ternopil Ivan Puluj National Technical University, Ukraine;
e-mail: biotech@tu.edu.te.uaβ

Proteins of the casein complex of milk arouse considerable interest as the precursors of biologically active peptides which are capable of influencing various physiological systems of the body (digestive, nervous, cardiovascular, and immune). It has been established that various bioactive peptides are unevenly located in the structure of casein fractions. In this connection, there appeared a need to separate individual fractions of this protein for studying the pathways of formation and properties of bioactive casein peptides. To minimize negative effects of the purification procedure, we used the gel filtration on Sefarose 2B to produce native casein micelles and repeating filtration on Sephadex G-150 to separate individual fractions. As a result, according to electrophoretic analysis, casein micelles with a characteristic protein composition were obtained. Taking into account the similarity of the molecular weight of components for their dividing the repeated gel filtration was carried out with separating the chromatograms into sectors. The composition of the combined fractions of each sector was analyzed by electrophoresis. This approach allowed isolating two electrophoretically homogeneous proteins from native casein micelles – κ-CN-1P and β-CN-5P, as well as to obtain a substantially purified (> 83%) αS1-CN-XP. Isolated caseins without the influence of extreme factors can be used to study natural bioactive peptides.

 

Gentamicin and magnesium chloride normalize cholinesterase and ATPase activities in rats acutely exposed to dichlorvos (DDVP) pesticide

B. S. Ajilore1, A. E. Adewuyi2, T. O. Oluwadairo2

1Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria;
e-mail: doctorajibam@yahoo.com;
2Department of Chemical Sciences, Faculty of Basic and Applied Sciences, College of Science, Engineering and Technology, Osun State University, Osogbo, Nigeria

This study investigated possible use of gentamicin and magnesium chloride as antidotes of dichlorvos pesticide poisoning. Thirty albino rats were randomly divided into 5 groups (n = 6). Group 1 served as negative control and received distilled water only. Group 2 served as positive control and was treated with 2.5 mg/kg body weight dichlorvos intraperitoneally. Group 3 was post-treated with 0.5 mg atropine following intraperitoneal 2.5 mg/kg dichlorvos while groups 4 and 5 rat were post-treated with 28 mg/kg intramuscular magnesium chloride and 5 mg/kg intramuscular gentamicin respectively following intraperitoneal 2.5 mg/kg dichlorvos. Plasma and red blood cell acetylcholinesterase activities were estimated. Total ATPase, Na+/K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase activities were estimated in the brain. Results showed significant (P < 0.05) increase in acetylcholinesterase activities in rats post treated with Atropine, MgCl2 and Gentamicin when compared with acetylcholinesterase activities in rats treated with dichlorvos only. There is significant (P < 0.05) increase in the activities of Ca2+,Mg2+-ATPases, Na+/K+-ATPase and total ATPase activities in the brain of rats post treated with atropine, magnesium chloride and gentamicin. Dichlorvos significantly (P < 0.05) reduced plasma and red blood cell cholinesterase activities, and brain ATPases activities. We concluded that dichlorvos toxicity inhibited cholinesterase, Na+/K+-ATPase and Ca2+,Mg2+-ATPases activities. Magnesium chloride and gentamicin on the other hand reduced effects of dichlorvos poisoning by promoting normal ATPase activities and inhibiting release of acetylcholine from cell. We proposed that both magnesium chloride and gentamicin can be co-administered in future as antidotes to patients with dichlorvos poisoning.

Liver cytochrome P450-hydroxylation system of tumor-bearing rats under the influence of ω-3 polyunsaturated fatty acids and vitamin D(3)

I. O. Shymanskyi1, O. V. Ketsa2, M. M. Marchenko2, М. М. Veliky1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: ihorshym@gmail.com;
2Fedkovich Chernovtsy National University, Chernovtsy

The study was performed to investigate the effects of the separate and combined action of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and vitamin D3 on the activity of the components of the oxygenase and reductase chains of the monooxygenase system (MOS) in the microsomal fraction isolated from the liver of rats with transplanted Guerin carcinoma. In the liver of the tumor-bearing rats during the intensive growth of the tumor (14 days, which corresponds to the logarithmic phase of tumor growth), the functional activity of the MOS was weakened. N-demethylase, p-hydroxylase and NADPH-cytochrome P450 reductase activity decreased, with the simultaneous enhancement of cytochrome P450 inactivation rate due to its transformation into an inactive form, cytochrome P420. In turn, we found an increase in the functional activity of the reductase chain of MOS, which components are known to transfer electrons from the reduced NADH through NADH-cytochrome b5-reductase and cytochrome b5 to cytochrome P450. In particular, the activity of NADH-cytochrome b5-reductase and the rate of reduction of cytochrome b5 were elevated with a simultaneous decrease in its content. Both ω-3 PUFAs and vitamin D3 administration to tumor-bearing rats for 42 days (28 days of preliminary administration and 14 days of tumor growth) significantly normalized the oxygenase activity of MOS, increasing NADPH-cytochrome P450-reductase, N-demethylase and p-hydroxylase activity of cytochrome P450 and blocking cytochrome P450 inactivation rate in the microsomal fraction of the liver. Administration of ω-3 PUFAs in combination with vitamin D3 led to the synergy. Changes in the activity of the components of the reductase chain of MOS in liver of tumor-bearing rats were observed mainly after ω-3 PUFAs supplementation. The content of cytochrome b5 increased and the rate of its reduction was significantly diminished. In the absence of a pronounced individual effect of vitamin D3 on the reductase chain of MOS, its co-administration with ω-3 PUFA was also found to be ineffective.

Pathways and mechanisms of transmembrane calcium ions exchange in the cell nucleus

T. O. Veklich, Yu. V. Nikonishyna, S. O. Kosterin

Palladin Institute of Biochemistry, National Academy Sciences of Ukraine, Kyiv;
e-mail: veklich@biochem.kiev.ua

A variety of nuclear calcium functions includes regulations of gene transcription and permeability of nuclear pore complexes, activation of numerous enzymes involved in the apoptosis, and therefore cell fate determination. Thus, the pathways of Ca2+ entry into the nucleus, the interplay between nuclear and cytosolic calcium signals, calcium accumulation in the nuclear depot, extrusion and subsequent destinies are of particular interest. In this review, we systematized literature data and our results about aspects of calcium transport in the cell. We especially concentrated on calcium transport systems and general mechanisms of calcium exchange in the central organelle – the nucleus. We also described the general structure of the cell nucleus, nuclear envelope transporters, and the role of Ca2+ in the nucleus and disturbances of nuclear calcium signaling.