Tag Archives: allelic polymorphisms of genes

Allelic polymorphisms of DNA repairing genes as markers of resistance to asbestos-containing aerosols

T. A. Andrushchenko1, S. V. Goncharov2, V. E. Dosenko2,
D. O. Stroy2, K. E. Ishchejkin3

1SI “Kundiiev Institute of Occupational Health of the National Academy of Medical Sciences of Ukraine”, Kyiv;
2Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv;
3Ukrainian Medical Stomatological Academy, Poltava;
e-mail: imp-cys@ukr.net

Received: 14 March 2019; Accepted: 18 October 2019

We studied the frequency distribution of DNA repairing genes allelic polymorphisms in the occupational group of asbestos-cement plants workers (n = 95). The aim of the work was to determine the probable molecular genetic markers of resistance to the development of bronchopulmonary pathology under the action of chrysotile-asbestos-containing dust. In 46 workers with chronic forms of bronchopulmonary pathology and 49 workers of the same professions without chronic diseases of the respiratory system, allelic polymorphisms XPD (rs13181, rs799793), ERCC1 (rs11615), XRCC3 (rs861539), XRCC1 (rs25487), ATM (rs664677), XRCC7 (rs7003908) and MLH1 (rs1799977) were determined using the real-time polymerase chain reaction. It was established that XRCC1•G/A (rs25487) (OR = 0.45; 95% CI: 0.18–1.10; P = 0.050; χ2 = 3.73); MLH1•A/A (rs1799977) (OR = 0.28; 95% CI: 0.14 – 0.71; P = 0.003; χ2 = 8.75) genotypes contribute to the resistance to bronchopulmonary pathology development, while XPD•Asn/Asn (rs799793) (OR = 2.20; 95% CI: 1.75–2.77; P = 0.001; χ2 = 6.62); XRCC1•A/A (rs25487) (OR = 1.73; 95% CI: 1.23–2.43; P = 0.040; χ2 = 3.92); ATM•T/T (rs664677) (OR = 3.47; 95% CI: 1.01–12.51; P = 0.020; χ2 = 4.98); MLH1•A/G (rs1799977) (OR = 2.95; 95% CI: 1.17–7.49; P = 0.010; χ2 = 6.42) genotypes were found to be associated with the risk of respiratory disease development. The obtained results show interconnection between certain alleles of DNA repair genes and the risk of bronchopulmonary pathology development under the influence of industrial aerosols, including asbestos-containing ones.