Tag Archives: H(+)-ATPase
Glutathione influence on energy metabolism in rat liver mitochondria under experimental nephropathy
Ye. O. Ferenchuk, I. V. Gerush
Higher State Educational Establishment of Ukraine “Bukovinian State Medical University”, Chernivtsi;
e-mail: yelena_f@ukr.net
Received: 17 October 2018; Accepted: 14 March 2019
Mitochondrial oxidative damage and disorders of energy metabolism contribute to a wide range of pathologies and disease progression. In our work, the effect of glutathione on the activity of respiratory chain enzymes and the content of free SH-groups in rat liver mitochondria was examined with the use of folic acid-induced nephropathy model. Mitochondria were isolated by differential centrifugation, NADH-dehydrogenase, succinate dehydrogenase, cytochrome oxidase and H+-ATPase activity were determined. The activity of these enzymes and the content of the free SH-groups in the liver were shown to be decreased under conditions of nephropathy, evidently due to the intensification of the free radical processes. The introduction of glutathione increased the content of SH-groups and the activity of the Complexes II and V enzymes of mitochondrial respiratory chain but did not change the activity of cytochrome oxidase in mitochondria isolated from the liver of rats under experimental nephropathy. The results obtained demonstrate a positive effect of glutathione on mitochondrial succinate dehydrogenase and H+-ATPase activity normalization in the liver of rats with nephropathy. These findings may help to extend the understanding of mitochondrial energy metabolism under development of kidney diseases.
Gene expression of H(+)-pumps in plasma and vacuolar membranes of corn root cells under the effect of sodium ions and bioactive preparations
N. O. Kovalenko, T. A. Palladina
Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv;
e-mail: tatiana_palladina@ukr.net
Four isoforms of H+-ATPase of plasma membrane: MHA1, MHA2, MHA3, MHA4 are expressed in the corn seedling roots with prevalence of genes MHA3 і MHA4. The exposure of seedlings in the presence of 0.1 M NaCl activated the expression of MHA4 gene isoform, that demonstrates its important role in the processes of adaptation to salinization conditions. In vacuolar membrane, where potential is created by two Н+-pumps, sodium ions activated gene expression of only Н+-АТРase of V-type, taking no effect on the expression of Н+-pyrophosphatase. The seeds pretreatment by synthetic preparations Methyure and Ivine did not affect gene expression of Н+-pumps. Thus we can suppose that the ability of the above preparations to activate functioning of Н+-pumps in the presence of sodium ions is realized at the post-tranlation level.







