Tag Archives: MCF-7 cells
Transcriptional regulation of NOX genes expression in human breast adenocarcinoma MCF-7 cells is modulated by adaptor protein Ruk/CIN85
A. V. Bazalii, I. R. Horak, G. V. Pasichnyk, S. V. Komisarenko, L. B. Drobot
Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: drobot@biochem.kiev.ua
NADPH oxidases are key components of redox-dependent signaling networks involved in the control of cancer cell proliferation, survival and invasion. The data have been accumulated that demonstrate specific expression patterns and levels of NADPH oxidase homologues (NOXs) and accessory genes in human cancer cell lines and primary tumors as well as modulation of these parameters by extracellular cues. Our previous studies revealed that ROS production by human colorectal adenocarcinoma HT-29 cells is positively correlated with adaptor protein Ruk/CIN85 expression while increased levels of Ruk/CIN85 in weakly invasive human breast adenocarcinoma MCF-7 cells contribute to their malignant phenotype through the constitutive activation of Src/Akt pathway. In this study, to investigate whether overexpression of Ruk/CIN85 in MCF-7 cells can influence transcriptional regulation of NOXs genes, the subclones of MCF-7 cells with different levels of Ruk/CIN85 were screened for NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2 as well as for regulatory subunit p22Phox mRNA contents by quantitative RT-PCR (qPCR). Systemic multidirectional changes in mRNA levels for NOX1, NOX2, NOX5, DUOX2 and p22Phox were revealed in Ruk/CIN85 overexpressing cells in comparison to control WT cells. Knocking down of Ruk/CIN85 using technology of RNA-interference resulted in the reversion of these changes. Further studies are necessary to elucidate, by which molecular mechanisms Ruk/CIN85 could affect transcriptional regulation of NOXs genes.
Multiple molecular forms of adaptor protein Ruk/CIN85 specifically associate with different subcellular compartments in human breast adenocarcinoma MCF-7 cells
B. O. Vynnytska-Myronovska1, Ya. P. Bobak1, G. V. Pasichnyk2,
N. I. Igumentseva1, A. A. Samoylenko2, L. B. Drobot2
1Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv;
2Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: drobot@biochem.kiev.ua
Ruk/CIN85 is a receptor-proximal ‘signalling’ adaptor that possesses three SH3 domains, Pro- and Ser-rich regions and C-terminal coiled-coil domain. It employs distinct domains and motifs to act as a transducer platform in intracellular signalling. Based on cDNA analysis, various isoforms of Ruk/CIN85 with different combination of protein-protein interaction domains as well as additional Ruk/CIN85 forms that are the products of post-translational modifications have been demonstrated. Nevertheless, there is no precise information regarding both the subcellular distribution and the role of Ruk/CIN85 multiple molecular forms in cellular responses. Using MCF-7 human breast adenocarcinoma cells and cell fractionation technique, specific association of Ruk/CIN85 molecular forms with different subcellular compartments was demonstrated. Induction of apoptosis of MCF-7 cells by doxorubicin treatment or by serum deprivation resulted in the system changes of Ruk/CIN85 molecular forms intracellular localization as well as their ratio. The data obtained provide a new insight into potential physiological significance of Ruk/CIN85 molecular forms in the regulation of various cellular functions.