Tag Archives: mTOR

Oxydative stress in type 2 diabetic patients: involvement of HIF-1 alpha AND mTOR genes expression

Y. A. Saenko1, O. O. Gonchar2*, I. M. Mankovska2,
T. I. Drevytska2, L. V. Bratus2, B. M. Mankovsky1,3

1SI “The Scientific and Practical Medical Center of Pediatric Cardiology and Cardiac Surgery
of the Ministry of Health of Ukraine”, Clinic for Adults, Kyiv;
2Department of Hypoxia, Bogomoletz Institute of Physiology,
National Academy of Sciences of Ukraine, Kyiv;
3Shupyk National Healthcare University of Ukraine, Kyiv;
*e-mail:olga.gonchar@i.ua

Received: 22 March 2023; Revised: 25 May 2023;
Accepted: 05 June 2023; Available on-line:  20 June 2023

Biochemical and genetic mechanisms of oxidative stress (OS) developing in the blood of patients with type 2 Diabetes mellitus (T2DM) were studied. Twenty patients with T2DM and 10 healthy persons participated in this study. Lipid peroxidation, the content of protein carbonyls and H2O2 production were measured in blood plasma and erythrocytes as OS biomarkers. Activity of SOD, catalase, and GPx as well as reduced glutathionе (GSH) level in plasma and erythrocytes were estimated. The gene expression of key regulators of oxygen and metabolic homeostasis (HIF-1α and mTOR) in leukocytes were studied. It was found a significant rise in TBARS and protein carbonyls content in plasma as well as H2O2 production in erythrocytes from patients with T2DM compared to control. The diabetic patients also demonstrated an increase in the SOD and catalase activity in plasma and significantly lower GSH content and GPx activity in erythrocytes compared to the healthy participants. The established marked inhibition of mTOR gene expression and the tendency to an increase in HIF-1α gene expression in leukocytes of patients with T2DM may serve as a protective mechanism which counteracts OS developing and oxidative cell damage.

Protein intake and loss of proteostasis in the eldery

A. N. Kirana1, E. Prafiantini1, N. S. Hardiany2,3*

1Department of Nutrition, Faculty of Medicine, Universitas Indonesia – Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia;
2Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia;
3Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine, Universitas Indonesia;
*e-mail: novi.silvia@ui.ac.id

Received: 29 June 2020; Accepted: 17 December 2020

Ageing is a process of declining bodily function and a major risk factor of chronic diseases. The declining bodily function in ageing can cause loss of proteostasis (protein homeostasis), which is a balance between protein synthesis, folding, modification and degradation. For the elderly, adequate protein intake is necessary to prevent sarcopenia, frailty, fracture and osteoporosis as well as reduced resistance to infection. However, increasing the protein intake can enhance the risk of oxidized protein formation, loss of proteostasis and degenerative disorder occurrence. On the other hand, several studies show that protein restriction would increase longevity. The aim of this review was to explain the importance of determining the right amount and composition of protein intake for the elderly. Oxidative stress and molecular mechanism of proteostasis loss in ageing cells as well as its suppression pathway by protein restriction are discussed in this review.