Tag Archives: nicotinamide

L-carnitine administration effects on AMPK, APPL1 and PPARγ genes expression in the liver and serum adiponectin levels and HOMA-IR in type 2 diabetes rat model induced by STZ and nicotinamide

B. Shahouzehi1,2, H. Fallah3, Y. Masoumi-Ardakani4*

1Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran;
2Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran;
3Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran;
4Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran;
*e-mail: ymab125@gmail.com

Received: 18 January 2020; Accepted: 25 June 2020

Diabetes is a chronic disease and a public health problem globally. L-Carnitine is synthesized in the liver, promotes fatty acids oxidation and currently is used as a supplement against weight gain. Carnitine level is found to be reduced in diabetic patients and to be beneficial as a supplement at diabetes, but the mechanisms­ of this effect is not fully understood. Therefore, we evaluated the oral L-carnitine supplementation on expression of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma (PPARγ), adaptor protein APPL1 genes in the liver and insulin and adiponectin levels  in the serum of diabetic rats. Rats were randomly divided into three groups (n = 8) as follow: group 1 – control without any treatment, group 2 – diabetic control rats which received STZ (45 mg/kg) and nicotinamide (200 mg/kg) by i.p. injection, group 3 – diabetic rats which received 600 mg/kg/day carnitine orally for 35 days. It was found that L-carnitine supplementation reduced the level of fasting glucose compared to that in control and diabetic groups (P = 0.001,  P = 0.0001 respectively) and increased adiponectin level compared to diabetic nontreated rats (P = 0.0001). Homeostasis model assessment of insulin resistance (HOMA-IR) was significantly increased in the diabetic group and reduced in the group that received L-carnitine. These promising beneficial effect of L-carnitine on the type 2 diabetes in rats’ model was shown to be conducted through the up-regulation of AMPK, PPARγ and APPL1 genes expression in the liver and elevation of serum adiponectin level.

Use of vitamins for correction of the functional state of cytochrome P450 systems at experimental allergic encephalomyelitis

E. P. Pasichna1, G. V. Donchenko1, A. P. Burlaka2, V. S. Nedzvetskiy3,
E. P. Sidorik2, I. I.Ganusevich2, N. V. Delemenchuk1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv;
3Honchar National University, Dnipropetrovsk, Ukraine;
e-mail: ellapasich@gmail.com

It is known that inflammatory cytokines, which level is significantly increased in the pathogenesis of multiple sclerosis (MS), as well as interferon-β, which is used to treat autoimmune diseases, can inhibit cytochrome P450-dependent processes of detoxification and biotransformation. The uncontrolled decrease of the activity of these processes may have a negative affect on the state of patients, so it is urgent to study the functional state of the cytochrome P450 system and to develop effective means for its regulation in these conditions. The effect of vitamin D3 and efficiency of its composition with vitamins B1, B2, B6, PP, E, α-lipoic, α-linolenoic acid and mineral substances (Mg, Zn, Se) in prevention of a functional state changes of cytochrome P450- and b5-dependent systems of the rat brain and liver endoplasmic reticulum at EAE are investigated. It has been shown that the essential decrease of the level of these cytochromes is observed both in the brain and liver. In addition the level of activity of NADH-and NADPH-oxidoreductases, which are part of microsomal electron transport chain components and coupled with monooxigenases, was reduced. These changes confirm the disturbances of a redox state and functional activity of detoxication and biotransformation systems in the studied animal tissues. Supplement of vitamin D3 as well as the composition of biologically active substances, which we developed earlier, effectively eliminated the decrease of the level of cytochromes and activities of NADH-oxidoreductase in immunised rat tissues. Normalization of these disturbances can be explained by antioxidant and membrane-stabilizing properties of applied substances, and also by the ability to reduce the activity of inflammatory reactions by regulation of the level of inflammatory cytokines in rat organism at EAE. Thus the studied vitamin-mineral composition appeared to be more effective to normalize the found disturbances and it can be useful for prevention of exacerbations and for improvement of a status of patients with multiple sclerosis and other diseases, which are accompanied with hyperactivation of immune system.

Influence of poly(ADP-ribose)polymerase inhibitors on some parameters of oxidative stress in blood leukocytes of rats with experimental diabetes

M. M. Guzyk1, K. O. Dyakun1, L. V. Yanitska2, Т. М. Kuchmerovska1

1Palladin Institute of Biochemistry, National Academy of Science of Ukraine, Kyiv;
e-mail: kuch@biochem.kiev.ua;
2O. O. Bogomolets’ National Medical University, Kyiv, Ukraine;

The study was undertaken to investigate the influence of specific inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1), in particular nicotinamide and 1,5-isoqinolinediol on white blood cells of rats with diabetes. Using the fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate ROS production in leukocytes was asseced. It was found that the development of streptozotocin-induced diabetes was accompanied by an intensification of oxidative stress and a significant decrease in via­bility of blood leukocytes as compared to control animals. Administration of PARP-1 inhibitors prevented the development of oxidative stress in leukocytes and increased their viability. It was shown a reduction of superoxide dismutase activi­ty in serum in diabetes. Investigated PARP-1 inhibitors had no effect on the activity of superoxide dismutase and glucose levels in the blood. The findings­ suggest the intensification of oxidative stress in leukocytes of diabetic animals and the ability of nicotinamide and 1,5-isoqinolinediol to prevent its development depending on the features of their structure.

Effect of nicotinamide on amino acids content in bone collagen depending on biological availability of vitamins in diabetic rats

M. M. Guzyk1, Iu. T. Sergiichuk1,2, K. O. Dyakun1,2,
L. V. Yanitska3, T. M. Kuchmerovska1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: kuch@biochem.kiev.ua;
2Taras Shevchenko Kyiv National University, Ukraine;
3O. O. Bogomolets National Medical University, Kyiv

Connective tissue is highly susceptible to imbalances induced by diabetes. Diabetes-related osteopenia, decreased bone strength etc. may be associated with altered metabolism of various collagens. Although it is assumed that alterations in collagen amino acids (AA) may strongly affect protein properties and physio­logical functions, however, very limited evidences are present at the moment regarding AA composition of bone type I collagen and its relevance to abnormal availability of vitamins which are necessary for collagen synthesis in diabetes. We have tested whether nicotinamide (NAm) can influence type I collagen formation and AA composition as well as vitamins availability in diabetes. After 4 weeks of STZ-induced diabetes (60 mg/kg) male Wistar rats were injected for 2 weeks with/without NAm (200 mg/kg b. w.). Acid extraction of type I collagen from the bones was performed with following stepwise salting out. The content of type I collagen after its acid extraction from the bones was estimated by the amounts of hydroxyproline. Amino acids were assayed by cation exchange chromatography. Diabetes-associated changes in AA composition of type I collagen mainly affect those amino acids which are known to be involved in helix formation and cross-linking of the molecules. Diabetes was found to significantly reduce bone collagen contents of o-Pro, Gly, Ala, o-Lys and Pro, whereas Lys, His, Arg, Glu, Thr, Leu, Phe contents were elevated (P < 0.05). NAm treatment was able to partially normalise AA contents. In diabetes, blood serum and hepatic vitamin C and B3 contents were shown to be significantly lowered, whereas α-tocopherol was slightly increased compared with control (P < 0.05). Restoration of circulatory and liver vitamin C and B3 was observed. The data demonstrate the close relationship between the diabetes-associated decrease in type I collagen deposition, altered amino acids metabolism and impaired availability of vitamins, which are necessary for collagen synthesis. Thus, NAm might be a useful agent for treatment of bone failures related to diabetes.