Tag Archives: reactive oxygen species (ROS)

Plasminogen modulates formation of reactive oxygen species in human platelets

A. A. Tykhomyrov, D. D. Zhernosekov, M. M. Guzyk, V. V. Korsa, T. V. Grinenko

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: artem_tykhomyrov@ukr.net

Reactive oxygen species (ROS) are considered to be important signalling molecules controlling many platelet functions. ROS production has been shown to be augmented by platelet activation, however, plasminogen (Pg) has not been studied in the context of modulating intraplatelet ROS levels. The aim of this study was to investigate the ability of different Pg forms to affect platelet metabolic activity/survival and intracellular ROS production in resting and activated platelets. Platelets isolated from donor plasma were pre-treated with Glu- or Lys-Pg (1.2 µM) and activated by thrombin (1.0 NIH unit/ml) or collagen (1.25 mg/ml). MTT assay was adapted to estimate total mitochondrial dehydrogenase activity, while intracellular ROS levels were monitored with the use of H2DCF-DA probe by flow cytometry. Lys-Pg was shown to slightly, but significantly, mitigate MTT reduction (P < 0.05 vs. control platelets). Two-fold elevation in metabolic activity of platelets stimulated by thrombin as compared to untreated cells was observed. However, this activation was less exhibi­ted in the case of platelets pre-incubated with either Glu- of Lys-Pg, with a predominant effect of Lys-Pg. Unlike thrombin, collagen treatment dramatically suppressed metabolic activity of platelets by 60% compared to control (P < 0.05). Glu- or Lys-Pg pre-incubation had no effects on the activity of collagen-stimulated platelets. Two subpopulations of platelets were observed with distinct characteristics of intracellular ROS formation. Elevated ROS production was demonstrated in these populations of both thrombin- and collagen-treated platelets. Pg (Lys-form to greater extent) enhanced intracellular ROS generation in thrombin-stimulated platelets. These findings suggest that augmented ROS generation within platelets pre-treated with Pg followed by their stimulation may result in down-regulation of their survival and functional activity. This study adds to our understanding one more possible mechanism of Pg impact on the platelet function.

The role of reactive oxygen species in tumor cells apoptosis induced by landomycin A

L. V. Lehka1, R. R. Panchuk1, W. Berger2, Ju. Rohr3, R. S. Stoika1

1Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv;
2Institute of Cancer Research, Medical University of Vienna, Austria;
3Department of Pharmaceutical Sciences, University of Kentucky, USA;
e-mail: lilyalehka@gmail.com

Landomycin A (LA) is a new antitumor antibiotic of angucycline group, possessing high antitumor activity against cancer cells of different origin, which induces early apoptosis in target cells. It was shown that under LA action the level of reactive oxygen species (ROS) in human T-leukemia cells had increased 5.6 times in comparison to control already at the 1st hour after the addition of studied antibiotic to the culture medium. At the 6th hour after incubation of cells with LA the nucleosomal DNA cleavage, chromatin condensation and nucleus fragmentation were observed, indicating apoptotic cell death. Catalase (scavenger of hydrogen peroxide), mannitol (scavenger of hydroxyl radicals) and superoxide dismutase (scavenger of superoxide radicals) reduced the level of ROS production under LA, suggesting the generation of H2O2, OH and O2 radicals, respectively. It was revealed that catalase and mannitol effectively inhibited LA-mediated tumor cell death, increasing 2.5 times the percentage of alive cells in comparison to LA. However, superoxide dismutase had no significant inhibitory effect on cytotoxic activity of LA, indicating the minor role of superoxide anions in the implementation of antitumor activity of this antibiotic. Combination of catalase, mannitol and superoxide dismutase with LA increased 4-fold the percentage of alive cells in comparison to the action of LA. Dynamics of ROS formation confirms that the increase of ROS is a very rapid process, but at the same time it is not a direct consequence of apoptosis triggering, mediated by mitochondria.