Tag Archives: systemic inflammation

Systemic inflammation biomarkers in 6-OHDA- and LPS-induced Parkinson’s disease in rats

Zh. Oliynyk*, M. Rudyk, V. Svyatetska, T. Dovbynchuk, G. Tolstanova, L. Skivka

ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Ukraine;
*e-mail: ojankin@yahoo.com

Received: 14 December 2021; Accepted: 21 January 2022

Hematological and immunological markers of systemic inflammation were studied in 6-hydroxydopamine (6-OHDA)- and lipopolysaccharide (LPS)-induced models of Parkinson’s disease (PD). Experiments were carried out on adult male Wistar rats: 1 – intact animals; 2 – sham-operated animals and 3 – 6-OHDA- and LPS-lesioned animals. PD development was confirmed by the results of behavioral testing (apomorphine test, open field test) and immunohistochemical detection of the loss of dopaminergic neurons. Hematological indices (complete blood count and differential leukocyte count (DLC)) were examined using hematological analyser. Immunological indices included phenotypic (CD206 and CD80/86) and metabolic (oxidative metabolism and phagocytic activity) characteristics of circulating monocytes (Mo) and granulocytes (Gr), which were determined by flow cytometry, as well as plasma levels of C-reactive protein, which were determined by ELISA. LPS-induced PD was associated with neutrophilia, 1.9 times increased neutrophil-to-lymphocyte ratio, 3 times increased platelet-to-lymphocyte ratio, and 3 times increased systemic immune inflammation index as compared to intact animals. Functional profile of circulating phagocytes from LPS-lesioned animals was characterized by the pro-inflammtory metabolic shift, as was indicated by 5 times increased oxidative metabolism indices and up-regulated CD80/86 expression along with decreased phagocytic activity and CD206 expression. 6-OHDA-lesioned rats demonstrated decreased DLC indices as compared to intact and sham-operated rats. Functional profile of circulating phagocytes in this model was characterized by anti-inflammatory shift. The results obtained from this study demonstrated that stereotaxic LPS-induced PD is appropriate rodent model for the study of systemic inflammation which is inherent for the disease pathophysiology.