Tag Archives: vitamin D3

Vitamin D(3) contribution to the regulation of oxidative metabolism in the liver of diabetic mice

D. O. Labudzynskyi, O. V. Zaitseva, N. V. Latyshko,
O. O. Gudkova, M. M. Veliky

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: konsumemt3@gmail.com

This work is devoted to the study of the features of oxidative metabolism of hepatocytes in diabetic mice and those under the vitamin D3 action. We found out that a 2.5-fold decrease of 25OHD3 content in the serum was caused by chronic hyperglycemia in diabetes. Intensification of the reactive oxygen species (ROS) and nitrogen monoxide (NO) production, protein oxidative modifications (detected by the contents of carbonyl groups and 3-nitrotyrosine), accumulation of diene conjugates and TBA-reactive products of lipid peroxidation, and the decreased level of free SH-groups of low molecular weight compounds in the liver were accompanied by development of vitamin D3 deficient state. It was shown that there was a decrease in the key antioxidant enzymes activity (catalase, SOD), while the activity of prooxidant enzymes NAD(P)H:quinone oxidoreductase, xanthine oxidase and NAD(P)H oxidase was increased. The identified oxidative metabolism lesions caused the elevation of the hepatocytes necrotic death that was tested for the ability of their nuclei to accumulate propidium iodide. Prolonged vitamin D3 administration (during 2 months) at a dose of 20 IU to diabetic mice helps to reduce the ROS formation and biomacromolecules oxidative damage, normalizes the antioxidant system state in the liver and increases survival of hepatocytes. The results suggest that vitamin D3 is a key player in the regulation of the oxidative metabolism in diabetes.

Vitamin D(3) availability and functional activity of peripheral blood phagocytes in experimental type 1 diabetes

D. О. Labudzynskyi, І. О. Shymanskyy, V. М. Riasnyi, М. М. Veliky

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: konsument3@gmail.com

The study was devoted to identifying the relation between vitamin D3 availability (assessed by the level of circulatory 25OHD3), content of vitamin D3 25-hydroxylase isozymes CYP27A1 and CYP2R1 in hepatic tissue and functional activity of peripheral blood phagocytes in mice with experimental type 1 diabetes. It has been shown that diabetes is accompanied by the development of vitamin D3-deficiency which is characterized by decreased 25OHD3 content in blood serum and determined by changes in tissue expression of the major isoforms of vitamin D3 25-hydroxylase. The level of hepatic CYP27A1 was revealed to be markedly reduced with a concurrent significant augmentation of CYP2R1. Cholecalciferol administration resulted in normalization of tissue levels of both isoforms of vitamin D3 25-hydroxylase and blood serum 25OHD3 content. Diabetes-associated vitamin D3 deficiency correlated with a decrease in phagocytic activity of granulocytes and monocytes, and their ability to produce antibacterial biooxidants such as reactive oxygen and nitrogen forms. Vitamin D3 efficacy to attenuate these abnormalities of immune function was established, indicating an important immunoregulatory role of cholecalciferol in the phagocytic mechanism of antigens elimination implemented by granulocytes and monocytes.

Correction by vitamin D(3) of disturbed metabolism in patients with diabetes mellitus types 1 and 2

Yu. I. Komisarenko

A. A. Bogomolets National Medical University, Kyiv, Ukraine;
e-mail: julia_komissarenko@hotmail.com

Vitamin D deficiency is an increasingly recognized public health problem of population as a whole and against a background of different chronic diseases. The aim of the study was to determine the status of D-vitamin, mineral, carbohydrate and lipid metabolism in patients with diabetes 1 and 2 types and in the case of vitamin D3 application. The data on the impact of vitamin D3 deficiency on mine­ral, carbohydrate and lipid metabolism, as well as on pancreatic β-cells functional activity in patients with diabetes mellitus types 1 and 2 are presented. Certain reasons that lead to the disruption of vitamin D3 metabolism in patients with diabetes mellitus and the results of vitamin D3 application in clinics are discussed.