Ukr.Biochem.J. 2014; Volume 86, Issue 2, Mar-Apr, pp. 107-118

doi: http://dx.doi.org/10.15407/ubj86.02.107

Vitamin D(3) availability and functional activity of peripheral blood phagocytes in experimental type 1 diabetes

D. О. Labudzynskyi, І. О. Shymanskyy, V. М. Riasnyi, М. М. Veliky

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: konsument3@gmail.com

The study was devoted to identifying the relation between vitamin D3 availability (assessed by the level of circulatory 25OHD3), content of vitamin D3 25-hydroxylase isozymes CYP27A1 and CYP2R1 in hepatic tissue and functional activity of peripheral blood phagocytes in mice with experimental type 1 diabetes. It has been shown that diabetes is accompanied by the development of vitamin D3-deficiency which is characterized by decreased 25OHD3 content in blood serum and determined by changes in tissue expression of the major isoforms of vitamin D3 25-hydroxylase. The level of hepatic CYP27A1 was revealed to be markedly reduced with a concurrent significant augmentation of CYP2R1. Cholecalciferol administration resulted in normalization of tissue levels of both isoforms of vitamin D3 25-hydroxylase and blood serum 25OHD3 content. Diabetes-associated vitamin D3 deficiency correlated with a decrease in phagocytic activity of granulocytes and monocytes, and their ability to produce antibacterial biooxidants such as reactive oxygen and nitrogen forms. Vitamin D3 efficacy to attenuate these abnormalities of immune function was established, indicating an important immunoregulatory role of cholecalciferol in the phagocytic mechanism of antigens elimination implemented by granulocytes and monocytes.

Keywords: , , , , , ,


References:

  1. Joshi SK, Shrestha S. Diabetes mellitus: a review of its associations with different environmental factors. Kathmandu Univ Med J. 2010 Jan-Mar;8(29):109-15. Review. PubMed, CrossRef
  2. Salsali A, Nathan M. A review of types 1 and 2 diabetes mellitus and their treatment with insulin. Am J Ther. 2006 Jul-Aug;13(4):349-61. Review. PubMed, CrossRef
  3. Pittas AG, Dawson-Hughes B. Vitamin D and diabetes. J Steroid Biochem Mol Biol. 2010 Jul;121(1-2):425-9. Review. PubMed, PubMedCentral, CrossRef
  4. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010 Aug;10(4):482-96. Review. PubMed, CrossRef
  5. Cooper JD, Smyth DJ, Walker NM, Stevens H, Burren OS, Wallace C, Greissl C, Ramos-Lopez E, Hyppönen E, Dunger DB, Spector TD, Ouwehand WH, Wang TJ, Badenhoop K, Todd JA. Inherited variation in vitamin D genes is associated with predisposition to autoimmune disease type 1 diabetes. Diabetes. 2011 May;60(5):1624-31. PubMed, PubMedCentral, CrossRef
  6. Ramos-Lopez E, Brück P, Jansen T, Herwig J, Badenhoop K. CYP2R1 (vitamin D 25-hydroxylase) gene is associated with susceptibility to type 1 diabetes and vitamin D levels in Germans. Diabetes Metab Res Rev. 2007 Nov;23(8):631-6. PubMed, CrossRef
  7. Mohammadnejad Z, Ghanbari M, Ganjali R, Afshari JT, Heydarpour M, Taghavi SM, Fatemi S, Rafatpanah H. Association between vitamin D receptor gene polymorphisms and type 1 diabetes mellitus in Iranian population. Mol Biol Rep. 2012 Feb;39(2):831-7.  PubMed, CrossRef
  8. Devaraj S, Yun JM, Duncan-Staley CR, Jialal I. Low vitamin D levels correlate with the proinflammatory state in type 1 diabetic subjects with and without microvascular complications. Am J Clin Pathol. 2011 Mar;135(3):429-33. PubMed, CrossRef
  9. Komissarenko YuI, Skrypnyk RL, Antonenko EV. Vitamin D levels in patients w ith diabetic retinopathy. Endokrynologia. 2012;17(3):56-58.
  10. Sachin Arora, Shreesh Kumar Ojha, Divya Vohora. Characterisation of streptozotocin induced diabetes mellitus in swiss albino mice. Global J Pharmacol. 2009;3(2):81–84.
  11. Lapach SN, Chubenko AV, Babich PN. Statistical methods in biological studies using Excel. K.: Morion, 2000. 320 p.
  12. Harper DR, Murphy G. Nonuniform variation in band pattern with luminol/horseradish peroxidase western blotting. Anal Biochem. 1991 Jan;192(1):59-63. PubMed, CrossRef
  13. Gerasimov IG, Kalutskaia OA. Kinetics of the reaction of nitroblue tetrazolium reduction by human blood neutrophils. Tsitologiia. 2000;42(2):160-5. Russian. PubMed
  14. Viksman ME, Mayansky AN. A method for evaluation of human neutrophils functional activity based on nitro blue tetrazolium reduction: Method. recommendations.  Kazan: Kazanskiy NIIEM, 1979. 11 p.
  15. Hussein AG, Mohamed RH, Alghobashy AA. Synergism of CYP2R1 and CYP27B1 polymorphisms and susceptibility to type 1 diabetes in Egyptian children. Cell Immunol. 2012 Sep;279(1):42-5. PubMed, CrossRef
  16. Shinkyo R, Sakaki T, Kamakura M, Ohta M, Inouye K. Metabolism of vitamin D by human microsomal CYP2R1. Biochem Biophys Res Commun. 2004 Nov 5;324(1):451-7. PubMed, CrossRef
  17. Hollander D, Rim E, Morgan D. Intestinal absorption of 25-hydroxyvitamin D3 in unanesthetized rat. Am J Physiol. 1979 Apr;236(4):E441-5. PubMed
  18. Reboul E, Goncalves A, Comera C, Bott R, Nowicki M, Landrier JF, Jourdheuil-Rahmani D, Dufour C, Collet X, Borel P. Vitamin D intestinal absorption is not a simple passive diffusion: evidences for involvement of cholesterol transporters. Mol Nutr Food Res. 2011 May;55(5):691-702. PubMed, CrossRef
  19. Stefanov MV, Apukhovskaia LI. Features of vitamin D3 metabolism in liver cells in experimental diabetes mellitus. Ukr Biokhim Zhurn. 1996 Jan-Feb;68(1):66-72. Russian. PubMed
  20. Mathieu C, Gysemans C, Giulietti A, Bouillon R. Vitamin D and diabetes. Diabetologia. 2005 Jul;48(7):1247-57. Review. PubMed
  21. Takiishi T, Gysemans C, Bouillon R, Mathieu C. Vitamin D and diabetes. Rheum Dis Clin North Am. 2012 Feb;38(1):179-206. PubMed, CrossRef
  22. Drel VR. Main mechanisms of the initiation and development of diabetic complications: the role of nitrative stress. Studia Biologica. 2010;4(2):141–158.
  23. Shymanskyy IO, Kuchmerovska TM, Donchenko GV, Velikiy MM, Klimenko AP, Palivoda OM, Kuchymerovskyy MO. Oxidative stress correction by nicotinamide and nicotinoyl-GABA in diabetic neurophathy. Ukr Biokhim Zhurn. 2002 Sep-Oct;74(5):89–95. PubMed
  24. Marée AF, Komba M, Finegood DT, Edelstein-Keshet L. A quantitative comparison of rates of phagocytosis and digestion of apoptotic cells by macrophages from normal (BALB/c) and diabetes-prone (NOD) mice. J Appl Physiol. 2008 Jan;104(1):157-69.  PubMed, CrossRef
  25. Guzyk MM, Dyakun KO, Yanitska LV, Kuchmerovska ТМ. Influence of poly(ADP-ribose)polymerase inhibitors on some parameters of oxidative stress in blood leukocytes of rats with experimental diabetes. Ukr Biokhim Zhurn. 2013 Jan-Feb;85(1):62-70.  PubMed, CrossRef
  26. Alba-Loureiro TC, Munhoz CD, Martins JO, Cerchiaro GA, Scavone C, Curi R, Sannomiya P. Neutrophil function and metabolism in individuals with diabetes mellitus. Braz J Med Biol Res. 2007 Aug;40(8):1037-44. Review. PubMed, CrossRef
  27. Baeke F, Korf H, Overbergh L, van Etten E, Verstuyf A, Gysemans C, Mathieu C. Human T lymphocytes are direct targets of 1,25-dihydroxyvitamin D3 in the immune system. J Steroid Biochem Mol Biol. 2010 Jul;121(1-2):221-7. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.