Ukr.Biochem.J. 2015; Volume 87, Issue 1, Jan-Feb, pp. 5-20

doi: https://doi.org/10.15407/ubj87.01.005

Mg(2+),ATP-dependent plasma membrane calcium pump of smooth muscle cells. I. Structural organization and properties

T. O. Veklich, Iu. Iu. Mazur, S. O. Kosterin

Palladin Institue of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: veklich@biochem.kiev.ua; yuliya.vorona@gmail.com

Tight control of cytoplasm Ca2+ concentration is essential in cell functioning. Changing of Са2+ concentration is thorough in smooth muscle cells, because it determines relaxation/constraint process. One of key proteins which control Са2+ concentration in cytoplasm is Mg2+,ATP-dependent plasma membrane calcium pump. Thus, it is important to find compoumds which allowed one to change  Mg2+,ATP-dependent plasma membrane calcium pump activity, as long as this topic is of current interest in biochemical research which regards energy and pharmacomechanical coupling mechanism of muscle excitation and contraction. In this article we generalized literatute and own data about properties of smooth muscle cell plasma membrane Ca2+– pump. Stuctural oganization, kinetical properties and molecular biology are considered.

Keywords: , , , ,


References:

  1. Burdyga T., Richard J. P. Chapter 86 – Calcium Homeostasis and Signaling in Smooth Muscle. Joseph Hill. Boston. Waltham. 2012. P. 1155-1171.
  2. Pande J, Grover AK. Plasma membrane calcium pumps in smooth muscle: from fictional molecules to novel inhibitors. Can J Physiol Pharmacol. 2005 Aug-Sep;83(8-9):743-54. Review. PubMed
  3. Chalmers S, Olson ML, MacMillan D, Rainbow RD, McCarron JG. Ion channels in smooth muscle: regulation by the sarcoplasmic reticulum and mitochondria. Cell Calcium. 2007 Oct-Nov;42(4-5):447-66. Review. PubMed
  4. Ng LC, Gurney AM. Store-operated channels mediate Ca(2+) influx and contraction in rat pulmonary artery. Circ Res. 2001 Nov 9;89(10):923-9. PubMed
  5. Strehler EE, Adelaida GF, Penniston JT, Cari­de AJ. Plasma membrane Ca2+-pumps: structural diversity as basis for functional versatility. Biochem. Soc. Trans. 2007;35(Pt 5):919-922.
  6. Matthew A, Shmygol A, Wray S. Ca2+ entry, efflux and release in smooth muscle. Biol Res. 2004;37(4):617-24. PubMed
  7. Oloizia B, Paul RJ. Ca2+ clearance and contractility in vascular smooth muscle: evidence from gene-altered murine models. J Mol Cell Cardiol. 2008 Sep;45(3):347-62. Review.  PubMed, PubMedCentral, CrossRef
  8. Floyd R, Wray S. Calcium transporters and signalling in smooth muscles. Cell Calcium. 2007 Oct-Nov;42(4-5):467-76. Review.  PubMed
  9. Carafoli E. Mitochondrial Calcium Transport: Historical Aspects. Encyclopedia of Biological Chemistry (Second Edition), Editors-in-Chief: William J. Lennarz and M. Daniel Lane, Waltham. 2013. P. 118-126.
  10. Shmigol A, Eisner DA, Wray S. Carboxyeosin decreases the rate of decay of the [Ca2+]i transient in uterine smooth muscle cells isolated from pregnant rats. Pflugers Arch. 1998 Dec;437(1):158-60.  PubMed
  11. Carafoli E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J. 1994 Oct;8(13):993-1002. Review. PubMed
  12. Strehler EE, Zacharias DA. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev. 2001 Jan;81(1):21-50. Review. PubMed
  13. Pande J., Mallhi K. K., Grover A. K. Role of third extracellular domen of plasma membrane Ca2+-Mg2+-ATPase based on novel inhibitor caloxin 3A1. Cell Calcium. 2005;37(3):245-250.
  14. Olson S, Wang MG, Carafoli E, Strehler EE, McBride OW. Localization of two genes encoding plasma membrane Ca2(+)-transporting ATPases to human chromosomes 1q25-32 and 12q21-23. Genomics. 1991 Apr;9(4):629-41. PubMed
  15. Wang MG, Yi H, Hilfiker H, Carafoli E, Strehler EE, McBride OW. Localization of two genes encoding plasma membrane Ca2+ ATPases isoforms 2 (ATP2B2) and 3 (ATP2B3) to human chromosomes 3p26–>p25 and Xq28, respectively. Cytogenet Cell Genet. 1994;67(1):41-5. PubMed
  16. Kuzmin I, Stackhouse T, Latif F, Duh FM, Geil L, Gnarra J, Yao M, Li H, Tory K, Le Paslier D, Chumakov I, Cohen D, Chinault AC, Linehan WM, Lerman MI, Zbar B. One-megabase yeast artificial chromosome and 400-kilobase cosmid-phage contigs containing the von Hippel-Lindau tumor suppressor and Ca2+-transporting adenosine triphosphatase isoform 2 genes. Cancer Res. 1994;54:2486-2491.
  17. Burk SE, Shull GE. Structure of the rat plasma membrane Ca2+-ATPase isoform 3 gene and characterization of alternative splicing and transcription products. J Biol Chem. 1992;267:19683-19690.
  18. Hilfiker H, Strehler-Page MA, Stauffer TP, Carafoli E, Strehler EE. Structure of the gene encoding the human plasma membrane calcium pump isoform 1. J Biol Chem. 1993 Sep 15;268(26):19717-25. PubMed
  19. Krebs J. The influence of calcium signaling on the regulation of alternative splicing. Biochim Biophys Acta. 2009 Jun;1793(6):979-84. Review. PubMed, CrossRef
  20. Linde CI, Di Leva F, Domi T, Tosatto SC, Brini M, Carafoli E. Inhibitory interaction of the 14-3-3 proteins with ubiquitous (PMCA1) and tissue-specific (PMCA3) isoforms of the plasma membrane Ca2+ pump. Cell Calcium. 2008 Jun;43(6):550-61.  PubMed
  21. Enyedi A, Verma AK, Heim R, Adamo HP, Filoteo AG, Strehler EE, Penniston JT. The Ca2+ affinity of the plasma membrane Ca2+ pump is controlled by alternative splicing. J Biol Chem. 1994 Jan 7;269(1):41-3. PubMed
  22.  Caride AJ, Elwess NL, Verma AK, Filoteo AG, Enyedi A, Bajzer Z, Penniston JT. The rate of activation by calmodulin of isoform 4 of the plasma membrane Ca(2+) pump is slow and is changed by alternative splicing. J Biol Chem. 1999 Dec 3;274(49):35227-32. PubMed
  23. Caride AJ, Penheiter AR, Filoteo AG, Bajzer Z, Enyedi A, Penniston JT. The plasma membrane calcium pump displays memory of past calcium spikes. Differences between isoforms 2b and 4b. J Biol Chem. 2001 Oct 26;276(43):39797-804. Epub 2001 Aug 20. PubMed
  24. Kosterin S. O. Calcium transport in smooth muscles. Kiev: Naukova dumka, 1990. 216 p. (In Russian).
  25. Lyubakovska L. A., Slinchenko N. M., Burchynska N. F., Kurskij M. D. Catalitic properties of purified Са2+,Мg2+-АТРase of myometrium sarcolem. Biochemistry (M). 1990;55(7):1237-1243. (In Russian).
  26. Slinchenko NN, Liubakovskaia LA, Kurskiĭ MD, Sopel’ LV. Isolation and purification of Ca2+,Mg2+-ATPase from plasma membranes of the myometrium. Ukr Biokhim Zhurn. 1990 May-Jun;62(3):60-5. Russian. PubMed
  27. Veklich TO, Shkrabak AA, Mazur YuYu, Rodik RV, Boyko VI, Kalchenko VI., Kosterin SO. Kinetic regularities of calixarene C-90 action on the myometrial plasma membrane Ca2+,Mg2+-ATPase activity and on Ca2+ concentration in unexcited сells of the myometrium. Ukr Biokhim Zhurn. 2013 Jul-Aug;85(4):20-9. Ukrainian. PubMed, CrossRef
  28. Wuytack F, De Schutter G, Casteels R. Partial purification of (Ca2+ + Mg2+)-dependent ATPase from pig smooth muscle and reconstitution of an ATP-dependent Ca2+-transport system. Biochem J. 1981 Aug 15;198(2):265-71. PubMed, PubMedCentral
  29. Veklich TO, Shkrabak AA, Slinchenko NN, Mazur II, Rodik RV, Boyko VI, Kalchenko VI, Kosterin SO. Calix[4]arene С-90 selectively inhibits  Ca2+,Mg2+-АТРаse of myometrium cell plasma membrane. Biochemistry (M). 2014;79(5):417-424. PubMed, CrossRef
  30. Labyntseva RD, Slinchenkо NМ, Vеklіch ТО, Rodik RV, Chеrеnоk SО, Boiko VI, Kalchenko VI, Kоstеrіn SО. Comparative investigation of calixarenes influence on Mg2+-dependent ATP hydrolase enzymatic systems from smooth muscle cells of the uterus. Ukr. Biokhim. Zhurn. 2007;79(3):44-54. (In Ukrainian).
  31. Kursky MD, Slinchenko NM, Lyuba­kovska LA. Reconstitution of purified Ca2+, Mg2+-ATPase of the myometrium sarcolemma into liposomes and its catalytic properties. Ukr Biokhim Zhurn. 1990;62(3):66-71. (In Russian).
  32. Kaplia AA, Kosterin SA, Kurskiĭ MD. [ATPase activity and uptake of calcium by a fraction of plasma membrane of rabbit myometrium at functional rest and in pregnancy]. Biokhimiia. 1982 Sep;47(9):1499-503. Russian. PubMed
  33. Veklich TO, Shkrabak AA, Mazur YuYu, Rodik RV, Kalchenko VI, Kosterin SO. Kinetics of inhibitory effect of calix[4]arene C-90 on activity of transporting plasma membrane Ca2+, Mg2+-ATPase of smooth muscle cells. Ukr Biochem J. 2014 Sep-Oct;86(5):37-46. Ukrainian. PubMed, CrossRef
  34. Veklich TO, Shkrabak AA, Mazur II. The effect of calixarene C-90 on Ca2+,Mg2+-ATPase activity of smooth muscle cell plasma membrane. Abstracts of the Scientific-practical conference “Biologically active substances: basic and applied questions of production and application.” Novuy Svit, Crimea, Ukraine.  2013;2:325-326.
  35. Kosterin SO, Bratkova NF, Kurskij MD, Zimina VP. Properties of the ATP-dependent Са2+ transport system in the plasma membrane fraction of the myometrium. Biochemistry (M). 1983;48(2):244-253.
  36. Kosterin SO, Slinchenko NM, Gergalova GL. Energetic characterization of ATP-hydrolysing reaction which is catalized by solubilized plasma membrane Cа2+,Мg2+-АТРase of smooth muscle cells. Biochemistry (M). 1994;59(6):889-904.
  37. Popescu L. M., Foril C. P., Hinescu M., Pănoiu C., Cinteză M., Gherasim L. Nitroglycerin stimulates the sarcolemmal Ca2+-extrusion ATPase of coronary smooth muscle cells. Biochem Pharmacol. 1985;34(10):1857-1860.
  38. Slinchenko N. M., Chernysh I. G., Kosterin S. O. Utilization of purified myometrium cell plasma membrane Ca2+, Мg2+-ATPase for comparative estimation of efficacy of energy-dependent Ca2+-transport inhibitors. Ukr. Biokhim. Zhurn. 2003;75(2):33-38. (In Ukrainian).
  39. Yatime L, Buch-Pedersen MJ, Musgaard M, Morth JP, Lund Winther AM, Pedersen BP, Olesen C, Andersen JP, Vilsen B, Schiøtt B, Palmgren MG, Møller JV, Nissen P, Fedosova N. P-type ATPases as drug targets: tools for medicine and science. Biochim Biophys Acta. 2009 Apr;1787(4):207-20. Review. PubMed
  40. Naderali EK, Buttell N, Taggart MJ, Bullock AJ, Eisner DA, Wray S. The role of the sarcolemmal Ca(2+)-ATPase in the pH transients associated with contraction in rat smooth muscle. J Physiol. 1997 Dec 1;505 (Pt 2):329-36. PubMed, PubMedCentral
  41. Furukawa K, Tawada Y, Shigekawa M. Protein kinase C activation stimulates plasma membrane Ca2+ pump in cultured vascular smooth muscle cells. J Biol Chem. 1989 Mar 25;264(9):4844-9. PubMed
  42. Triphan J, Aumüller G, Brandenburger T, Wilhelm B. Localization and regulation of plasma membrane Ca(2+)-ATPase in bovine spermatozoa. Eur J Cell Biol. 2007 May;86(5):265-73. PubMed
  43. Padányi R, Pászty K, Penheiter AR, Filoteo AG, Penniston JT, Enyedi A. Intramolecular interactions of the regulatory region with the catalytic core in the plasma membrane calcium pump. J Biol Chem. 2003 Sep 12;278(37):35798-804. PubMed
  44. Krebs. Calcium: A Matter of Life or Death. Elsevier. The plasma membrane calcium pump. Ortega C., Ortolano S., Carafoli E. 2009. P. 179–197.
  45. Gutierrez-Martin Y, Martin-Romero FJ, Henao F, Gutierrez-Merino C. Syptosomal plasma membrane Ca2+ pump activity inhibition by repetitive micromolar ONOO-pulses. Free Radical Biol Med. 2002;32(1):46-55.
  46. Monteith GR, Wanigasekara Y, Roufogalis BD. The plasma membrane calcium pump, its role and regulation: new complexities and possibilities. J Pharmacol Toxicol Methods. 1998 Nov;40(4):183-90. Review. PubMed
  47. Oliveira VH, Nascimento KSO, Freire MM, Moreira OC, Scofano HM, Barrabin H, Mignaco JA. Mechanism of modulation of the plasma membrane Ca2+-ATPase by arachidonic acid. Prostaglandins Other Lipid Mediat. 2008;87:47-53.
  48. Monteith GR, Roufogalis BD. The plasma membrane calcium pump–a physiological perspective on its regulation. Cell Calcium. 1995 Dec;18(6):459-70. Review. PubMed
  49. Cartwright EJ, Oceandy D, Austin C, Neyses L. Ca2+ signalling in cardiovascular disease: the role of the plasma membrane calcium pumps. Sci China Life Sci. 2011 Aug;54(8):691-8. Review. PubMed, CrossRef
  50. Ishida Y, Paul RJ. Ca2+ clearance in smooth muscle: lessons from gene-altered mice. J Smooth Muscle Res. 2005 Oct;41(5):235-45. Review. PubMed
  51. Gomez-Pinilla PJ, Pozo MJ, Baba A, Matsuda T, Camello PJ. Ca2+ extrusion in aged smooth muscle cells. Biochem Pharmacol. 2007 Sep 15;74(6):860-9. Epub 2007 Jun 29. PubMed
  52. Liu L, Ishida Y, Okunade G, Shull GE, Paul RJ. Role of plasma membrane Ca2+-ATPase in contraction-relaxation processes of the bladder: evidence from PMCA gene-ablated mice. Am J Physiol Cell Physiol. 2006 Apr;290(4):C1239-47. PubMed
  53. Pritchard TJ, Bowman PS, Jefferson A, Tosun M, Lynch RM, Paul RJ. Na(+)-K(+)-ATPase and Ca(2+) clearance proteins in smooth muscle: a functional unit. Am J Physiol Heart Circ Physiol. 2010 Aug;299(2):H548-56. PubMed, PubMedCentral,  CrossRef
  54. Liu L, Ishida Y, Okunade G, Pyne-Geithman GJ, Shull GE, Paul RJ. Distinct roles of PMCA isoforms in Ca2+ homeostasis of bladder smooth muscle: evidence from PMCA gene-ablated mice. Am J Physiol Cell Physiol. 2007 Jan;292(1):C423-31. PubMed
  55. Okunade GW, Miller ML, Pyne GJ, Sutliff RL, O’Connor KT, Neumann JC, Andringa A, Miller DA, Prasad V, Doetschman T, Paul RJ, Shull GE. Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem. 2004;279(32):33742-33750.
  56. Usachev YM, DeMarco SJ, Campbell C, Strehler EE, Thayer SA. Bradykinin and ATP accelerate Ca(2+) efflux from rat sensory neurons via protein kinase C and the plasma membrane Ca(2+) pump isoform 4. Neuron. 2002 Jan 3;33(1):113-22. PubMed
  57. Noble D, Herchuelz A. Role of Na/Ca exchange and the plasma membrane Ca2+-ATPase in cell function. Conference on Na/Ca exchange. EMBO Rep. 2007 Mar;8(3):228-32. PubMed, PubMedCentral
  58. Prasad V, Okunade GW, Miller ML, Shull GE. Phenotypes of SERCA and PMCA knockout mice. Biochem Biophys Res Commun. 2004 Oct 1;322(4):1192-203. Review. PubMed
  59. Chen YF, Cao J, Zhong JN, Chen X, Cheng M, Yang J, Gao YD. Plasma membrane Ca2+-ATPase regulates Ca2+ signaling and the proliferation of airway smooth muscle cells. Eur J Pharmacol. 2014 Oct 5;740:733-41. PubMed, CrossRef
  60. Abramowitz J, Aydemir-Koksoy A, Helgason T, Jemelka S, Odebunmi T, Seidel CL, Allen JC. Expression of plasma membrane calcium ATPases in phenotypically distinct canine vascular smooth muscle cells. J Mol Cell Cardiol. 2000 May;32(5):777-89.  PubMed
  61. Pande J., Mallhi K. K., Grover A. K. A novel plasma membrane Ca2+-pump inhibitior: caloxin 1A1. Eur J Pharmacol. 2005;508(1–3): 1-6.
  62. Armesilla AL, Williams JC, Buch MH, Pickard A, Emerson M, Cartwright EJ, Oceandy D, Vos MD, Gillies S, Clark GJ, Neyses L. Novel functional interaction between the plasma membrane Ca2+ pump 4b and the proapoptotic tumor suppressor Ras-associated factor 1 (RASSF1). J Biol Chem. 2004 Jul 23;279(30):31318-28. PubMed.
  63. Sasamura S, Furukawa K, Shiratori M, Motomura S, Ohizumi Y. Antisense-inhibition of plasma membrane Ca2+ pump induces apoptosis in vascular smooth muscle cells. Jpn J Pharmacol. 2002 Oct;90(2):164-72.  PubMed.
  64. Schuh K, Uldrijan S, Gambaryan S, Roethlein N, Neyses L. Interaction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated kinase CASK. J Biol Chem. 2003 Mar 14;278(11):9778-83.  PubMed
  65. Schuh K, Uldrijan S, Telkamp M, Rothlein N, Neyses L. The plasmamembrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. J Cell Biol. 2001 Oct 15;155(2):201-5. PubMed,  PubMedCentral
  66. Hammes A, Oberdorf-Maass S, Rother T, Nething K, Gollnick F, Linz KW, Meyer R, Hu K, Han H, Gaudron P, Ertl G, Hoffmann S, Ganten U, Vetter R, Schuh K, Benkwitz C, Zimmer HG, Neyses L. Overexpression of the sarcolemmal calcium pump in the myocardium of transgenic rats. Circ Res. 1998 Nov 2;83(9):877-88.  PubMed
  67. Holton ML, Wang W, Emerson M, Neyses L, Armesilla AL. Plasma membrane calcium ATPase proteins as novel regulators of signal transduction pathways. World J Biol Chem. 2010 Jun 26;1(6):201-8.  PubMed,  PubMedCentral,  CrossRef
  68. Kosterin S. O. Kinetics and energetics of Mg2+,ATP-dependent Ca2+ transport in the plasma membrane of smooth muscle cells. Neurophysiol. 2003;35(3. 4):215-228.
  69. Di Leva F, Domi T, Fedrizzi L, Lim D, Carafoli E. The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Arch Biochem Biophys. 2008 Aug 1;476(1):65-74. Epub 2008 Mar 4. Review.  PubMed,  CrossRef
  70. Zhang J, Xiao P, Zhang X. Phosphatidylserine externalization in caveolae inhibits Ca2+ efflux through plasma membrane Ca2+-ATPase in ECV304. Cell Calcium. 2009 Feb;45(2):177-84.  PubMed,  CrossRef
  71. Pang Y, Zhu H, Wu P, Chen J. The characterization of plasma membrane Ca2+-ATPase in rich sphingomyelin-cholesterol domains. FEBS Lett. 2005 Apr 25;579(11):2397-403.  PubMed
  72. Brini M, Carafoli E. Calcium pumps in health and disease. Physiol Rev. 2009 Oct;89(4):1341-78. Review.  PubMed,  CrossRef
  73. Giacomello M, De Mario A, Scarlatti C, Primerano S, Carafoli E. Plasma membrane calcium ATPases and related disorders. Int J Biochem Cell Biol. 2013 Mar;45(3):753-62. Review.  PubMed, CrossRef
  74. Schuh K, Quaschning T, Knauer S, Hu K, Kocak S, Roethlein N, Neyses L. Regulation of vascular tone in animals overexpressing the sarcolemmal calcium pump. J Biol Chem. 2003 Oct 17;278(42):41246-52. PubMed
  75. DeMarco SJ, Strehler EE. Plasma membrane Ca2+-atpase isoforms 2b and 4b interact promiscuously and selectively with members of the membrane-associated guanylate kinase family of PDZ (PSD95/Dlg/ZO-1) domain-containing proteins. J Biol Chem. 2001 Jun 15;276(24):21594-600. PubMed
  76. Kim E, DeMarco SJ, Marfatia SM, Chishti AH, Sheng M, Strehler EE. Plasma membrane Ca2+ ATPase isoform 4b binds to membrane-associated guanylate kinase (MAGUK) proteins via their PDZ (PSD-95/Dlg/ZO-1) domains. J Biol Chem. 1998 Jan 16;273(3):1591-5.  PubMed
  77. DeMarco SJ, Chicka MC, Strehler EE. Plasma membrane Ca2+ ATPase isoform 2b interacts preferentially with Na+/H+ exchanger regulatory factor 2 in apical plasma membranes. J Biol Chem. 2002 Mar 22;277(12):10506-11. PubMed
  78. Goellner GM, DeMarco SJ, Strehler EE. Characterization of PISP, a novel single-PDZ protein that binds to all plasma membrane Ca2+-ATPase b-splice variants. Ann N Y Acad Sci. 2003 Apr;986:461-71.  PubMed
  79. Pászty K, Antalffy G, Penheiter AR, Homolya L, Padányi R, Iliás A, Filoteo AG, Penniston JT, Enyedi A. The caspase-3 cleavage product of the plasma membrane Ca2+-ATPase 4b is activated and appropriately targeted. Biochem J. 2005 Nov 1;391(Pt 3):687-92.  PubMed,  PubMedCentral

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.