Ukr.Biochem.J. 2014; Volume 86, Issue 4, Jul-Aug, pp. 90-102

doi: http://dx.doi.org/10.15407/ubj86.04.090

ERN1 knockdown modifies the hypoxic regulation of TP53, MDM2, USP7 and PERP gene expressions in U87 glioma cells

S. V. Danilovskyi1, D. O. Minchenko1,2, О. S. Moliavko1,
O. V. Kovalevska1, L. L. Karbovskyi1, O. H. Minchenko1

1Palladin Institute of Biochemistry National Academy of Sciences of Ukraine, Kyiv;
e-mail: ominchenko@yahoo.com;
2Bogomolets National Medical University, Kyiv, Ukraine

Endoplasmic reticulum stress and hypoxia are necessary components of malignant tumors growth and suppression of ERN1 (from endoplasmic reticulum to nuclei-1) signalling pathway, which is linked to the apoptosis and cell death processes, significantly decreases proliferative processes. Glioma cells with ERN1 knockdown were used in order to investigate the effect of ERN1 blockade on the expression of TP53, MDM2, PERP, and USP7 genes and its hypoxic regulation. We have studied the expression of TP53 (tumor protein 53), MDM2 (TP53 E3 ubiquitin protein ligase homolog), PERP (TP53 apoptosis effector), and USP7 (ubiquitin specific peptidase 7) genes, which are related to cell proliferation and apoptosis, in glioma cells with ERN1 knockdown under hypoxic condition. It was shown that blockade of ERN1 gene function in U87 glioma cells intensified the expression of TP53 and USP7 genes, but decreased the expression of MDM2 and PERP genes. Thus, an enhanced expression of TP53 gene in ERN1 knockdown glioma cells correlates with the decreased level of ubiquitin ligase MDM2 and increased expression level of USP7 which deubiquitinates TP53 and MDM2 and induces TP53-dependent cell growth repression and apoptosis. At the same time, the expression levels of TP53, MDM2, and USP7 genes do not change significantly in glioma cells with suppression of endoribonuclease activity only, but PERP gene expression is strongly increased. Moreover, the expression of TP53 and UPS7 genes is decreased in hypoxic conditions in control glioma cells only; however, MDM2 and PERP gene expressions are increased in both cell types, being more significant in ERN1 knockdown cells. Thus, the expression of genes encoding TP53 and related to TP53 factors depends upon the endoplasmic reticulum stress signaling as well as on hypoxia, and correlates with suppression of glioma growth under ERN1 knockdown.

Keywords: , , , , , , ,


References:

  1. Moenner M, Pluquet O, Bouchecareilh M, Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 2007 Nov 15;67(22):10631-4. Review. PubMed, CrossRef
  2. Schröder M. Endoplasmic reticulum stress responses. Cell Mol Life Sci. 2008 Mar;65(6):862-94. Review. PubMed
  3. Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol. 2012 Jun 25;197(7):857-67. Review. PubMed, PubMedCentral, CrossRef
  4. Auf G, Jabouille A, Guérit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, von Deimling A, Czabanka M, Vajkoczy P, Chevet E, Bikfalvi A, Moenner M. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA. 2010 Aug 31;107(35):15553-8. PubMedPubMedCentral, CrossRef
  5. Drogat B, Auguste P, Nguyen DT, Bouche­careilh M, Pineau R, Nalbantoglu J, Kauf­man RJ, Chevet E, Bikfalvi A, Moenner M. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res. 2007 Jul;67(14):6700-6707.  PubMed, CrossRef
  6. Schröder M., Kaufman R. J. The mammalian unfolded protein response.  Annu Rev Biochem. 2005;74:739-89. PubMed
  7. Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology. 2006 Jan 24;66(2 Suppl 1):S102-9. Review. PubMed, CrossRef
  8. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol. 2009 Aug 10;186(3):323-31.  PubMed, PubMedCentral, CrossRef
  9. Mills KD. Tumor suppression: putting p53 in context. Cell Cycle. 2013 Nov 15;12(22):3461-2. PubMed, PubMedCentral, CrossRef
  10. Golubovskaya VM, Cance WG. Targeting the p53 pathway. Surg Oncol Clin N Am. 2013 Oct;22(4):747-64.  Review. PubMed, PubMedCentral, CrossRef
  11. Dent P. Non-canonical p53 signaling to promote invasion. Cancer Biol Ther. 2013 Oct 1;14(10):879-80.  PubMed, PubMedCentral, CrossRef
  12. Lee SK, Kim YS. Phosphorylation of eIF2α attenuates statin-induced apoptosis by inhibiting the stabilization and translocation of p53 to the mitochondria. Int J Oncol. 2013 Mar;42(3):810-6. PubMed, PubMedCentral, CrossRef
  13. Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R. RYBP stabilizes p53 by modulating MDM2. EMBO Rep. 2009 Feb;10(2):166-72. PubMed, PubMedCentral, CrossRef
  14. Shahbazi J, Lock R, Liu T. Tumor Protein 53-Induced Nuclear Protein 1 Enhances p53 Function and Represses Tumorigenesis. Front Genet. 2013 May 13;4:80. eCollection 2013. PubMed, PubMed, CrossRef
  15. Thomas SE, Malzer E, Ordóñez A, Dalton LE, van ‘t Wout EF, Liniker E, Crowther DC, Lomas DA, Marciniak SJ. p53 and translation attenuation regulate distinct cell cycle checkpoints during endoplasmic reticulum (ER) stress. J Biol Chem. 2013 Mar 15;288(11):7606-17. PubMed, PubMedCentral, CrossRef
  16. Yang X, Li H, Zhou Z, Wang WH, Deng A, Andrisani O, Liu X. Plk1-mediated phosphorylation of Topors regulates p53 stability. J Biol Chem. 2009 Jul 10;284(28):18588-92. PubMed, PubMedCentral, CrossRef
  17. Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008 Aug 8;134(3):451-60. Erratum in: Cell. 2009 Jan 23;136(2):378. PubMedPubMedCentral, CrossRef
  18. Shinbo Y, Taira T, Niki T, Iguchi-Ariga SM, Ariga H. DJ-1 restores p53 transcription activity inhibited by Topors/p53BP3. Int J Oncol. 2005 Mar;26(3):641-8. PubMed, CrossRef
  19. Weger S, Hammer E, Heilbronn R. Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett. 2005 Sep 12;579(22):5007-12. PubMed, CrossRef
  20. Velasco-Miguel S, Buckbinder L, Jean P, Gelbert L, Talbott R, Laidlaw J, Seizinger B, Kley N. PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene. 1999 Jan 7;18(1):127-37.  PubMed, CrossRef
  21. Apostolidis PA, Lindsey S, Miller WM, Papoutsakis ET. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation. Physiol Genomics. 2012 Jun 15;44(12):638-50. PubMed, PubMedCentral, CrossRef
  22. Hsueh KW, Fu SL, Chang CB, Chang YL, Lin CH. A novel Aurora-A-mediated phosphorylation of p53 inhibits its interaction with MDM2. Biochim Biophys Acta. 2013 Feb;1834(2):508-15. PubMed, CrossRef
  23. Zhang X, Zhang Z, Cheng J, Li M, Wang W, Xu W, Wang H, Zhang R. Transcription factor NFAT1 activates the mdm2 oncogene independent of p53. J Biol Chem. 2012 Aug 31;287(36):30468-76.  PubMed, PubMedCentral, CrossRef
  24. Pettersson S, Sczaniecka M, McLaren L, Russell F, Gladstone K, Hupp T, Wallace M. Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway. Biochem J. 2013 Mar 15;450(3):523-36. PubMed, CrossRef
  25. Nicholson B, Suresh Kumar KG. The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem Biophys. 2011 Jun;60(1-2):61-8. Review. PubMed, CrossRef
  26. Kessler BM, Edelmann MJ. PTMs in conversation: activity and function of deubiquitinating enzymes regulated via post-translational modifications. Cell Biochem Biophys. 2011 Jun;60(1-2):21-38. Review. PubMed, PubMedCentral, CrossRef
  27. Dar A, Shibata E, Dutta A. Deubiquitination of Tip60 by USP7 determines the activity of the p53-dependent apoptotic pathway. Mol Cell Biol. 2013 Aug;33(16):3309-20.  PubMed, PubMedCentral, CrossRef
  28. Sarkari F, Wheaton K, La Delfa A, Moha­med M, Shaikh F, Khatun R, Arrowsmith CH, Frappier L, Saridakis V, Sheng Y. Ubiquitin-specific protease 7 is a regulator of ubiquitin-conjugating enzyme UbE2E1. J. Biol. Chem. 2013 Jun 7;288(23):16975–85.  PubMed, PubMedCentralCrossRef
  29. Giovinazzi S, Morozov VM, Summers MK, Reinhold WC, Ishov AM. USP7 and Daxx regulate mitosis progression and taxane sensitivity by affecting stability of Aurora-A kinase. Cell Death Differ. 2013 May;20(5):721-31.  PubMed, PubMedCentral, CrossRef
  30. Noguera NI, Song MS, Divona M, Cata­lano G, Calvo KL, García F, Ottone T, Florenzano F, Faraoni I, Battistini L, Colombo E, Amadori S, Pandolfi PP, Lo-Coco F. Nucleophosmin/B26 regulates PTEN through interaction with HAUSP in acute myeloid leukemia. Leukemia. 2013 Apr;27(5):1037-43.  PubMed, CrossRef
  31. Colleran A, Collins PE, O’Carroll C, Ahmed A, Mao X, McManus B, Kiely PA, Burstein E, Carmody RJ. Deubiquitination of NF-κB by Ubiquitin-Specific Protease-7 promotes transcription. Proc Natl Acad Sci USA. 2013 Jan 8;110(2):618-23.   PubMed, PubMedCentral, CrossRef
  32. Davies L, Gray D, Spiller D, White MR, Damato B, Grierson I, Paraoan L. P53 apoptosis mediator PERP: localization, function and caspase activation in uveal melanoma. J Cell Mol Med. 2009 Aug;13(8B):1995-2007. PubMedCrossRef
  33. Ihrie RA, Attardi LD. Perp-etrating p53-dependent apoptosis. Cell Cycle. 2004 Mar;3(3):265-7. PubMed, CrossRef
  34. Beaudry VG, Jiang D, Dusek RL, Park EJ, Knezevich S, Ridd K, Vogel H, Bastian BC, Attardi LD. Loss of the p53/p63 regulated desmosomal protein Perp promotes tumorigenesis. PLoS Genet. 2010 Oct 21;6(10):e1001168. PubMed, PubMedCentral, CrossRef
  35. Dusek RL, Bascom JL, Vogel H, Baron S, Borowsky AD, Bissell MJ, Attardi LD. Deficiency of the p53/p63 target Perp alters mammary gland homeostasis and promotes cancer. Breast Cancer Res. 2012 Apr 20;14(2):R65. PubMed, PubMedCentral, CrossRef
  36. Davies L, Spiller D, White MR, Grierson I, Paraoan L. PERP expression stabilizes active p53 via modulation of p53-MDM2 interaction in uveal melanoma cells. Cell Death Dis. 2011 Mar 31;2:e136. PubMedPubMedCentral, CrossRef
  37. Minchenko DО, Kubajchuk KI, Ratushna OO, Komisarenko SV, Minchenko OH. The vascular endothelial growth factor genes expression in glioma U87 cells is dependent from ERN1 signaling enzyme function. Adv. Biol. Chem. 2012;2(2):198-206. CrossRef
  38. Minchenko OH, Opentanova IL, Minchen­ko DO, Ogura T, Esumi H. Hypoxia induces transcription of 6-phosphofructo-2-kinase. fructose-2,6-bisphosphatase 4 gene via hypoxia-inducible factor-1alpha activation. FEBS Lett. 2004 Oct 8;576(1-2):14-20. PubMed , CrossRef
  39. Minchenko DО, Karbovskyi LL, Danilovskyi SV, Kharkova AP, Minchenko OH. Expression of casein kinase genes in glioma cell line U87: effect of hypoxia and glucose or glutamine deprivation. Nat Sci. 2012;4(1):38–46. CrossRef
  40. Minchenko DО, Karbovskyi LL, Danilovskyi SV, Moenner M, Minchenko OH. Effect of hypoxia and glutamine or glucose deprivation on the expression of retinoblastoma and retinoblastoma-related genes in ERN1 knockdown glioma U87 cell line. Am J  Mol Biol. 2012;2(1):21–31. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.