Ukr.Biochem.J. 2014; Volume 86, Issue 1, Jan-Feb, pp. 29-41
doi: http://dx.doi.org/10.15407/ubj86.01.029
Modulation of myometrium mitochondrial membrane potential by calmodulin antagonists
S. G. Shlykov, L. G. Babich, M. E. Yevtushenko, S. O. Karakhim, S. O. Kosterin
Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: sshlykov@biochem.kiev.ua
Influence of calmodulin antagonists on mitochondrial membrane potential was investigated using a flow cytometry method, confocal microscopy and fluorescent potential-sensitive probes TMRM and MTG. Influence of different concentrations of calmodulin antagonists on mitochondrial membrane potential was studied using flow cytometry method and a fraction of myometrium mitochondria of unpregnant rats. It was shown that 1-10 µМ calmidazolium gradually reduced mitochondria membrane potential. At the same time 10-100 µМ trifluoperazine influenced as follows: 10 µМ – increased polarization, while 100 µМ – caused almost complete depolarization of mitochondrial membranes. In experiments which were conducted with the use of confocal microscopy method and myometrium cells it was shown, that MTG addition to the incubation medium led to the appearance of fluorescence signal in a green range. Addition of the second probe (ТМRM) resulted in the appearance of fluorescent signal in a red range. Mitochondrial membrane depolarization by 1µМ СССР or 10 mМ NaN3 was accompanied by the decline of “red” fluorescence intensity, “green” fluorescence was kept. The 10-15 minute incubation of myometrium cells in the presence 10 µМ calmidazolium or 100 µМ trifluoperazine was accompanied by almost complete decrease of the TMRM fluorescent signal. Thus, with the use of potential-sensitive fluorescent probes TMRM and MTG it was shown, that calmodulin antagonists modulate mitochondrial membrane potential of myometrium cells.
Keywords: calmidazolium, confocal fluorescence microscopy, flow cytometry, isolated mitochondria, mitochondrial membrane potential, smooth muscles cells, trifluoperazine
References:
- Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004 Aug;25(4):365-451. Review. PubMed, CrossRef
- Nicholls DG. Mitochondria and calcium signaling. Cell Calcium. 2005 Sep-Oct;38(3-4):311-7. Review. PubMed, CrossRef
- Kostyuk PG, Lukianets OO. Calcium ions in brain function – from phisiology to pathology. K.: Nauk. Dumka, 2005. 200 p.
- Wu X, Bers DM. Free and bound intracellular calmodulin measurements in cardiac myocytes. Cell Calcium. 2007 Apr;41(4):353-64. PubMed, PubMedCentral, CrossRef
- Means AR, VanBerkum MF, Bagchi I, Lu KP, Rasmussen CD. Regulatory functions of calmodulin. Pharmacol Ther. 1991;50(2):255-70. Review. PubMed, CrossRef
- Vogel HJ. The Merck Frosst Award Lecture 1994. Calmodulin: a versatile calcium mediator protein. Biochem Cell Biol. 1994 Sep-Oct;72(9-10):357-76. Review. PubMed, CrossRef
- James P, Vorherr T, Carafoli E. Calmodulin-binding domains: just two faced or multi-faceted? Trends Biochem Sci. 1995 Jan;20(1):38-42. PubMed, CrossRef
- Maier LS, Bers DM. Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond. J Mol Cell Cardiol. 2002 Aug;34(8):919-39. Review. PubMed, CrossRef
- Moreau B, Nelson C, Parekh AB. Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ concentration. Curr Biol. 2006 Aug 22;16(16):1672-7. PubMed, CrossRef
- Medina JM, López-Mediavilla C, Orfao A. Flow cytometry of isolated mitochondria during development and under some pathological conditions. FEBS Lett. 2002 Jan 16;510(3):127-32. PubMed, CrossRef
- Mattiasson G. Flow cytometric analysis of isolated liver mitochondria to detect changes relevant to cell death. Cytometry A. 2004 Aug;60(2):145-54. PubMed, CrossRef
- Lecoeur H, Langonné A, Baux L, Rebouillat D, Rustin P, Prévost MC, Brenner C, Edelman L, Jacotot E. Real-time flow cytometry analysis of permeability transition in isolated mitochondria. Exp Cell Res. 2004 Mar 10;294(1):106-17. PubMed, CrossRef
- Babich LG, Shlykov SG, Naumova NV, Kosterin SO. Use of flow cytometry method to determine Ca2+ content in mitochondria and influence of calmodulin antagonists on it. Ukr Biokhim Zhurn. 2008 Jul-Aug;80(4):51-8. PubMed
- Kosterin SA, Bratkova NF, Kurskii MD. The role of sarcolemma and mitochondria in calcium-dependent control of myometrium relaxation. Biokhimiia. 1985 Aug;50(8):1350-61. Russian. PubMed
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. PubMed, CrossRef
- Babich LG, Shlykov SG, Naumova NV, Kosterin SO. Investigation of ca2+-induced changes of membrane potential of smooth muscle mitochondria using flow cytometric analysis. Ukr Biokhim Zhurn. 2007 Nov-Dec;79(6):34–41. PubMed
- Babich LG, Shlykov SG, Borisova LA, Kosterin SA. Energy-dependent Ca2+-transport in intracellular smooth muscle structures. Biokhimiia. 1994 Aug;59(8):1218-29. Russian. PubMed
- Shtein HY. Guide for confocal microscopy. SPb.: INI RAS, 2007. 77 p.
- Kosterin SO. Calcium transport in smooth muscles. K.: Nauk.Dumka, 1990, 216 p.
- Gietzen K. Pharmacological regulation of the activity of calmodulin. P. 405–423. In: Intracellular calcium regulation. Ed. by H. Bader, K. Gietzen, J. Rosenthal, R. Rudel, H. U. Wolf. Manchester University Press, 1986. 480 p.
- Satrústegui J, Pardo B, Del Arco A. Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev. 2007 Jan;87(1):29-67. Review. PubMed, CrossRef
