Ukr.Biochem.J. 2014; Volume 86, Issue 5, Sep-Oct, pp. 111-125

doi: https://doi.org/10.15407/ubj86.05.111

The ROS-generating and antioxidant systems in the liver of rats treated with prednisolone and vitamin D(3)

I. O. Shymanskyy, A. V. Khomenko, O. O. Lisakovska,
D. O. Labudzynskyi, L. I. Apukhovska, M. M. Veliky

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: ishymansk@inbox.ru

The mechanisms of glucocorticoid-induced disturbances of liver function is currently not fully clarified. Vitamin D3 was previously shown to play an important role in the regulation of impaired oxidative metabolism and detoxification function of the liver associated with the effects of hepatotoxic compounds. The study was undertaken to define the intensity of oxidative metabolism in the rat liver and survival of hepatocytes after prolonged prednisolone administration and to assess whether vitamin D3 is capable to counter glucocorticoid-induced changes. It has been shown that prednisolone (0.5 mg per animal for 30 days) leads to 1.6-fold increase in the percentage of necrotic cells among isolated hepatocytes as compared with the control. The glucocorticoid-induced impairment of hepatocellular function was accompanied by enhanced generation of reactive oxygen species (ROS), accumulation of TBA-active products and carbonylated proteins but reduced levels­ of free SH-groups of low molecular weight compounds. It was demonstrated a decrease in the activities of key enzymes of antioxidant system (SOD, catalase, glutathione peroxidase), whereas the activities of pro-oxidant enzymes NAD(P)H-quinone oxidoreductase and semicarbazide-sensitive amine oxidase were shown to be increased. Vitamin D3 (and to greater extent in combination with α-tocopherol) administration (100 IU) on the background of glucocorticoid therapy caused normalizing effects on the level of ROS formation, oxidative modification of biomolecules and activity of antioxidant enzymes resulting in better survival of hepatocytes. These data suggest a potential role of vitamin D3 in the regulation of oxidative metabolism alterations related to hepatotoxic action of glucocorticoids.

Keywords: , , , ,


References:

  1. Vandevyver S, Dejager L, Tuckermann J, Libert C. New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology. 2013 Mar;154(3):993-1007. Epub 2013 Feb 5. Review. PubMed, CrossRef
  2. Vengerovsky A. I., Baturina N. O., Sara­tikov A. S. The effect of glucocorticoid drugs on liver metabolism. Eksperim. Klin. Farmakol. 1999;62(1):75-80. (In Russian).
  3. Wang Z, Iwasaki Y, Zhao LF, Nishiyama M, Taguchi T, Tsugita M, Kambayashi M, Hashimoto K, Terada Y. Hormonal regulation of glycolytic enzyme gene and pyruvate dehydrogenase kinase/phosphatase gene transcription. Endocr J. 2009;56(8):1019-30. Epub 2009 Aug 25. PubMed, CrossRef
  4. Panin LE, Maksimov VF, Khoshchenko OM, Korostyshevskaia IM. Effect of combined glucocorticoids and low density lipoproteins on structural and functional changes in hepatocytes and Kupffer cells. Tsitologiia. 2002;44(12):1149-56. Russian. PubMed
  5. Loraschi A, Banfi P, Mauri M, Sessa F, Bono G, Cosentino M. Hepatotoxicity after high-dose methylprednisolone for demyelinating disease. Clin Neuropharmacol. 2010 Jan-Feb;33(1):52-4. PubMed, CrossRef
  6. Topal F, Ozaslan E, Akbulut S, Küçükazman M, Yüksel O, Altiparmak E. Methylprednisolone-induced toxic hepatitis.  Ann Pharmacother. 2006 Oct;40(10):1868-71. Epub 2006 Aug 22. PubMed, CrossRef
  7. Lu Y, Zhang Z, Xiong X, Wang X, Li J, Shi G, Yang J, Zhang X, Zhang H, Hong J, Xia X, Ning G, Li X. Glucocorticoids promote hepatic cholestasis in mice by inhibiting the transcriptional activity of the farnesoid X receptor. Gastroenterology. 2012 Dec;143(6):1630-1640.e8. Epub 2012 Aug 23. PubMed, CrossRef
  8. Menshikova E. B., Zenkov N. K., Lankin V. Z., Bondar I. A., Trufakin V. A. Oxidative Stress. Pathological Conditions and Diseases. Novosibirsk: ARTA, 2008. 284 p. (In Russian).
  9. Sánchez-Valle V, Chávez-Tapia NC, Uribe M, Méndez-Sánchez N. Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem. 2012;19(28):4850-60. Review. PubMed, CrossRef
  10. Bouillon R, Lieben L, Mathieu C, Verstuyf A, Carmeliet G. Vitamin D action: lessons from VDR and Cyp27b1 null mice. Pediatr Endocrinol Rev. 2013 Jun;10 Suppl 2:354-66. Review. PubMed
  11. Mukhopadhyay S, Singh M, Chatterjee M. Vitamin D3 as a modulator of cellular antioxidant defence in murine lymphoma. Nutr Res. 2000;20(1):91-102. CrossRef
  12. Lin AM, Chen KB, Chao PL. Antioxidative effect of vitamin D3 on zinc-induced oxidative stress in CNS. Ann N Y Acad Sci. 2005 Aug;1053(1):319-29. PubMed, CrossRef
  13. Han YP, Kong M, Zheng S, Ren Y, Zhu L, Shi H, Duan Z. Vitamin D in liver diseases: from mechanisms to clinical trials. J Gastroenterol Hepatol. 2013 Aug;28 Suppl 1:49-55. Review. PubMed, CrossRef
  14. Wiseman H. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 1993 Jul 12;326(1-3):285-8. PubMed, CrossRef
  15. Petrova GV, Delemenchuk NV, Donchenko GV. Effects of alpha-tocopherol and its anologues on rat thymocytes programmed death induced by protein kinase inhibitors. Ukr Biokhim Zhurn. 2012 Nov-Dec;84(6):86-95. Russian. PubMed
  16. Seglen P. Preparation of isolated rat liver cells. In Methods in cell Biology. Ed. D. M. Prescott. New York: Academic press, 1987. P. 29-83.
  17. Das J, Ghosh J, Manna P, Sil PC. Taurine provides antioxidant defense against NaF-induced cytotoxicity in murine hepatocytes. Pathophysiology. 2008 Oct;15(3):181-90. Epub 2008 Aug 3. PubMed, CrossRef
  18. Ning B, Bai M, Shen W. Reduced glutathione protects human hepatocytes from palmitate-mediated injury by suppressing endoplasmic reticulum stress response. Hepatogastroenterology. 2011 Sep-Oct;58(110-111):1670-9. Epub 2011 Jul 15. PubMed, CrossRef
  19. Zaytseva OV, Shandrenko SH. Modification of spectrophotometric method for determination of protein carbonyl groups. Ukr Biokhim Zhurn. 2012 Sep-Oct;84(5):112-6. Ukrainian. PubMed
  20. Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9(6):515-40. Review. PubMed
  21. Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976 Jul;74(1):214-26. PubMed, CrossRef
  22. Eriksson UJ, Borg LA. Protection by free oxygen radical scavenging enzymes against glucose-induced embryonic malformations in vitro. Diabetologia. 1991 May;34(5):325-31. PubMed, CrossRef
  23. Beers RF Jr, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133-40. PubMed
  24. Moin VM. A simple and specific method for determining glutathione peroxidase activity in erythrocytes. Lab Delo. 1986;(12):724-7. Russian. PubMed
  25. Petrova GV, Donchenko GV. Cytotoxicity of troglitazone, structural analogue of alpha-tocopherol is mediated by inhibition of NAD(P)H:quinone oxidoreductase. Ukr Biokhim Zhurn. 2009 Jul-Aug;81(4):105-11. Russian. PubMed
  26. Hirakawa K. Fluorometry of hydrogen peroxide using oxidative decomposition of folic acid. Anal Bioanal Chem. 2006 Sep;386(2):244-8. Epub 2006 Aug 8. PubMed, CrossRef
  27. Murillo MM, Carmona-Cuenca I, Del Castillo G, Ortiz C, Roncero C, Sánchez A, Fernández M, Fabregat I. Activation of NADPH oxidase by transforming growth factor-beta in hepatocytes mediates up-regulation of epidermal growth factor receptor ligands through a nuclear factor-kappaB-dependent mechanism. Biochem J. 2007;405(2):251-259. PubMed, PubMedCentral, CrossRef
  28. Lapach SN, Chubenko AV, Babich PN. Statistical methods in biomedical studies using Excel. K.: Morion, 2000. 320 p. (In Russian).
  29. Dontsov VI, Krut’ko VN, Mrikaev BM, Ukhanov SV. Reactive oxygen species as a system: significance in physiology, pathology and natural ageing. Proceedings SAI RAS. 2006;19:50-69. (In Russian).
  30. Kazimirko V. K., Maltsev V. I., Butylkin V. Y. Gorobets N. I. Free-Radical Oxidation and the Antioxidant Therapy. K.:Morion, 2004. 160 р. (In Russian).
  31. Bhogal RH, Curbishley SM, Weston CJ, Adams DH, Afford SC. Reactive oxygen species mediate human hepatocyte injury during hypoxia/reoxygenation. Liver Transpl. 2010 Nov;16(11):1303-13. PubMedCrossRef
  32. Gubskiy UI, Belenichev IF, Pavlov SV. Toxicological effects of oxidative modification of proteins in various pathological conditions (review). Sovr. Probl. Toks. 2005;(3):20-26. (In Russian).
  33. Tang VM, Young AH, Tan H, Beasley C, Wang JF. Glucocorticoids increase protein carbonylation and mitochondrial dysfunction. Horm Metab Res. 2013 Sep;45(10):709-15. Epub 2013 May 13. PubMed, CrossRef
  34. Korzhov VI, Zhadan VN, Korzhov MV. The role of glutathione system in the processes of detoxication and antioxidant protection. Zhurn. AMN Ukr. 2007;13(1):3-20. (In Russian).
  35. Lozovoy MA, Simão AN, Panis C, Rotter MA, Reiche EM, Morimoto HK, Lavado E, Cecchini R, Dichi I. Oxidative stress is associated with liver damage, inflammatory status, and corticosteroid therapy in patients with systemic lupus erythematosus. Lupus. 2011 Oct;20(12):1250-9. Epub 2011 Aug 3. PubMed, CrossRef
  36. Matsunaga T, Maruyama M, Matsubara T, Nagata K, Yamazoe Y, Ohmori S. Mechanisms of CYP3A induction by glucocorticoids in human fetal liver cells. Drug Metab Pharmacokinet. 2012;27(6):653-7. Epub 2012 May 22. PubMed, CrossRef
  37. Mueller KM, Themanns M, Friedbichler K, Kornfeld JW, Esterbauer H, Tuckermann JP, Moriggl R. Hepatic growth hormone and glucocorticoid receptor signaling in body growth, steatosis and metabolic liver cancer development. Mol Cell Endocrinol. 2012 Sep 25;361(1-2):1-11. Epub 2012 Apr 30. Review. PubMed, PubMedCentral, CrossRef
  38. Reagan WJ, Yang RZ, Park S, Goldstein R, Brees D, Gong DW. Metabolic adaptive ALT isoenzyme response in livers of C57/BL6 mice treated with dexamethasone. Toxicol Pathol. 2012 Dec;40(8):1117-27. Epub 2012 May 18. PubMed, CrossRef
  39. Mazzella G, Fusaroli P, Pezzoli A, Azzaroli F, Mazzeo C, Zambonin L, Simoni P, Festi D, Roda E. Methylprednisolone administration in primary biliary cirrhosis increases cholic acid turnover, synthesis, and deoxycholate concentration in bile. Dig Dis Sci. 1999 Dec;44(12):2478-83. PubMed
  40. Khomenko A. V., Shymanskyy I. O., Veliky M. M., Apuchovska L. I. Alteration of cholecalciferol metabolism in hepatocytes associated with prednisolone administration. RECOOP Annual Project Review Meeting, October 10-13, 2013, Split, Croatia, p. 47.
  41. Lind C, Cadenas E, Hochstein P, Ernster L. DT-diaphorase: purification, properties, and function. Methods Enzymol. 1990;186:287-301. PubMed, CrossRef
  42. Kargin VI, Motovilov KA, Vyssokikh AYu, Yaguzhinskiy L. Interactions of positively charged ubiquinone analogue (MitoQ(10)) with DT-diaphorase in liver mitochondria. Biol. Membr. 2008;25:34-40. (In Russian).
  43. Watanabe N, Dickinson DA, Liu RM, Forman HJ. Quinones and glutathione metabolism. Methods Enzymol. 2004;378:319-40. Review. PubMed, CrossRef
  44. Alferova VV, Uzbekov MG, Misionzhnik EJ, Lukjanjuk ЕV, Geht АB, Scklovsky VМ. Role of semicarbazide-sensitive amine oxidase in disturbances of endogenic detoxication in ischemic stroke patients. Zh Nevrol Psikhiatr Im S S Korsakova. 2011;111(4 Pt 2):18-22. (In Russian). PubMed
  45. De Minicis S, Brenner DA. Oxidative stress in alcoholic liver disease: role of NADPH oxidase complex. J Gastroenterol Hepatol. 2008 Mar;23 Suppl 1:S98-103. Review. PubMed, CrossRef
  46. Diaz-Cruz A, Vilchis-Landeros MM, Guinzberg R, Villalobos-Molina R, Piña E. NOX2 activated by α1-adrenoceptors modulates hepatic metabolic routes stimulated by β-adrenoceptors. Free Radic Res. 2011 Nov;45(11-12):1366-78. PubMed, CrossRef
  47. Clavijo-Cornejo D, Enriquez-Cortina C, López-Reyes A, Domínguez-Pérez M, Nuño N, Domínguez-Meraz M, Bucio L, Souza V, Factor VM, Thorgeirsson SS, Gutiérrez-Ruiz MC, Gómez-Quiroz LE. Biphasic regulation of the NADPH oxidase by HGF/c-Met signaling pathway in primary mouse hepatocytes. Biochimie. 2013;95(6):1177-1184. PubMed, PubMedCentral, CrossRef
  48. Khomenko AV. Cholecalciferol hydroxylation in rat hepatocytes under the influence of prednisolone. Ukr Biokhim Zhurn. 2013 May-Jun;85(3):90-5. Ukrainian. PubMed
  49. Kancheva VD, Kasaikina OT. Bio-antioxidants – a chemical base of their antioxidant activity and beneficial effect on human health. Curr Med Chem. 2013;20(37):4784-805. Review. PubMed, CrossRef
  50. Sardar S, Chakraborty A, Chatterjee M. Comparative effectiveness of vitamin D3 and dietary vitamin E on peroxidation of lipids and enzymes of the hepatic antioxidant system in Sprague–Dawley rats. Int J Vitam Nutr Res. 1996;66(1):39-45. PubMed
  51. Tukaj S, Trzonkowski P, Tukaj C. Regulatory effects of 1,25-dihydroxyvitamin D3 on vascular smooth muscle cells. Acta Biochim Pol. 2012;59(3):395-400. Epub 2012 Aug 21. PubMed
  52. Karmakar R, Banik S, Chatterjee M. Inhibitory effect of vitamin D3 on 3’methyl-4-dimethyl-amino-azobenzene-induced rat hepatocarcinogenesis: a study on antioxidant defense enzymes. J Exp Ther Oncol. 2002 Jul-Aug;2(4):193-9. PubMed, CrossRef
  53. Pahuja DN, Mitra AG, Deshpande UR, Nadkarni GD. The role of calcium in the modulation of the hepatic anti-oxidant defence system. J Trace Elem Electrolytes Health Dis. 1993 Jun;7(2):71-4. PubMed
  54. Bao BY, Ting HJ, Hsu JW, Lee YF. Protective role of 1 alpha, 25-dihydroxyvitamin D3 against oxidative stress in nonmalignant human prostate epithelial cells. Int J Cancer. 2008 Jun 15;122(12):2699-706. PubMed, CrossRef
  55. Garcion E, Sindji L, Leblondel G, Brachet P, Darcy F. 1,25-dihydroxyvitamin D3 regulates the synthesis of gamma-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J Neurochem. 1999 Aug;73(2):859-66. PubMed, CrossRef
  56. Li H, Xie H, Fu M, Li W, Guo B, Ding Y, Wang Q. 25-hydroxyvitamin D3 ameliorates periodontitis by modulating the expression of inflammation-associated factors in diabetic mice. Steroids. 2013 Feb;78(2):115-20. Epub 2012 Nov 5. PubMed, CrossRef
  57. Luong KV, Nguyen LT. The role of vitamin d in autoimmune hepatitis. J Clin Med Res. 2013 Dec;5(6):407-15. Epub 2013 Oct 12. Review. PubMed, PubMedCentral, CrossRef
  58. Koren R, Hadari-Naor I, Zuck E, Rotem C, Liberman UA, Ravid A. Vitamin D is a prooxidant in breast cancer cells. Cancer Res. 2001 Feb 15;61(4):1439-44. PubMed
  59. Cohen MS, Mesler DE, Snipes RG, Gray TK. 1,25-Dihydroxyvitamin D3 activates secretion of hydrogen peroxide by human monocytes. J Immunol. 1986 Feb 1;136(3):1049-53. PubMed
  60. Levy R, Malech HL. Effect of 1,25-dihydroxyvitamin D3, lipopolysaccharide, or lipoteichoic acid on the expression of NADPH oxidase components in cultured human monocytes. J Immunol. 1991 Nov 1;147(9):3066-71. PubMed
  61. Somjen D., Katzburg S., Grafi-Cohen M., Knoll E., Sharon O., Posner G.H. Vitamin D metabolites and analogs induce lipoxygenase mRNA expression and activity as well as reactive oxygen species (ROS) production in human bone cell line. J. Steroid Biochem. Mol. Biol. 2011 Jan;123(1-2):85-89. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.