Ukr.Biochem.J. 2014; Volume 86, Issue 1, Jan-Feb, pp. 75-84
doi: http://dx.doi.org/10.15407/ubj86.01.075
Transcriptional regulation of the Hansenula polymorpha GSH2 gene in the response to cadmium ion treatment
O. V. Blazhenko, А. B. Kotlyarchuk, V. M. Ubiyvovk
Institute of Cell Biology, National Academy of Science of Ukraine, Lviv;
e-mail: Oleksandra.Blazhenko@googlemail.com
In a previous study we cloned GSH2 gene, encoding γ-glutamylcysteine synthetase (γGCS) in the yeast Hansenula рolymorpha. In this study an analysis of molecular organisation of the H. рolymorpha GSH2 gene promoter was conducted and the potential binding sites of Yap1, Skn7, Creb/Atf1, and Cbf1 transcription factors were detected. It was established that full regulation of GSH2 gene expression in the response to cadmium and oxidative stress requires the length of GSH2 promoter to be longer than 450 bp from the start of translation initiation. To study the transcriptional regulation of H. polymorpha GSH2 gene recombinant strain, harbouring a reporter system, in which 1.832 kb regulatory region of GSH2 gene was fused to structural and terminatory regions of alcohol oxidase gene, was constructed. It was shown that maximum increase in H. polymorpha GSH2 gene transcription by 33% occurs in the rich medium under four-hour incubation with 1 μM concentration of cadmium ions. In the minimal medium the GSH2 gene expression does not correlate with the increased total cellular glutathione levels under cadmium ion treatment. We assume that the increased content of total cellular glutathione under cadmium stress in the yeast H. polymorpha probably is not controlled on the level of GSH2 gene transcription.
Keywords: cadmium, glutathione, GSH2 gene, Hansenula рolymorpha, transcriptional regulation
References:
- Hengstler JG, Bolm-Audorff U, Faldum A, Janssen K, Reifenrath M, Götte W, Jung D, Mayer-Popken O, Fuchs J, Gebhard S, Bienfait HG, Schlink K, Dietrich C, Faust D, Epe B, Oesch F. Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis. 2003 Jan;24(1):63-73. PubMed, CrossRef
- Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995 Feb;18(2):321-36. Review. PubMed, CrossRef
- Diffels JF, Seret ML, Goffeau A, Baret PV. Heavy metal transporters in Hemiascomycete yeasts. Biochimie. 2006 Nov;88(11):1639-49. PubMed, CrossRef
- Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci USA. 1997 Jan 7;94(1):42-7. PubMed, PubMedCentral, CrossRef
- Vande Weghe JG, Ow DW. Accumulation of metal-binding peptides in fission yeast requires hmt2+. Mol Microbiol. 2001 Oct;42(1):29-36. PubMed, CrossRef
- Bachhawat A. K., Ganguli D., Kaur J. et al. Glutathione production in yeast. Yeast Biotechnology: Diversity and Applications. Edited by Satyanarayana T., Kunze G. Springer Science+Business Media B. V., 2009. P. 259-280. CrossRef
- Westwater J, McLaren NF, Dormer UH, Jamieson DJ. The adaptive response of Saccharomyces cerevisiae to mercury exposure. Yeast. 2002 Feb;19(3):233-9. PubMed, CrossRef
- Sugiyama K, Izawa S, Inoue Y. The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J Biol Chem. 2000 May 19;275(20):15535-40. PubMed, CrossRef
- Zhang L, Onda K, Imai R, Fukuda R, Horiuchi H, Ohta A. Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2003 Jul 25;307(2):308-14. PubMed, CrossRef
- Momose Y, Kitagawa E, Iwahashi H. Comparison of Genome-wide Expression Patterns in Response to Heavy Metal Treatment in Saccharomyces cerevisiae. 1) Cadmium and mercury. Chem-Bio Informatics J. 2001;1(1):41–50. CrossRef
- Dormer UH, Westwater J, McLaren NF, Kent NA, Mellor J, Jamieson DJ. Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J Biol Chem. 2000 Oct 20;275(42):32611-6. PubMed, CrossRef
- Kim SJ, Park EH, Lim CJ. Stress-dependent regulation of the gene encoding gamma-glutamylcysteine synthetase from the fission yeast. Mol Biol Rep. 2004 Mar;31(1):23-30. PubMed, CrossRef
- Nguyen AN, Lee A, Place W, Shiozaki K. Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol Biol Cell. 2000 Apr;11(4):1169-81. PubMed, PubMedCentral, CrossRef
- Ubiyvovk VM, Nazarko TY, Stasyk OG, Sohn MJ, Kang HA, Sibirny AA. GSH2, a gene encoding gamma-glutamylcysteine synthetase in the methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res. 2002 Aug;2(3):327-32. PubMed
- Ubiyvovk VM, Blazhenko OV, Zimmermann M, Sohn MJ, Kang HA. Cloning and functional analysis of the GSH1/MET1 gene complementing cysteine and glutathione auxotrophy of the methylotrophic yeast Hansenula polymorpha. Ukr Biokhim Zhurn. 2011 Sep-Oct;83(5):67-81. PubMed
- Blazhenko OV, Zimmermann M, Kang HA, Bartosz G, Penninckx MJ, Ubiyvovk VM, Sibirny AA. Accumulation of cadmium ions in the methylotrophic yeast Hansenula polymorpha. Biometals. 2006 Dec;19(6):593-9. PubMed, CrossRef
- Ubiyvovk VM1, Nazarko TIu, Stasyk EG, Sibirny AA. Cloning of the GSH1 and GSH2 genes complementing the defective biosynthesis of glutathione in the methylotrophic yeast Hansenula polymorpha. Mikrobiologiia. 2002 Nov-Dec;71(6):829-35. PubMed
- Sambrook J., Fritsch E. F., Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd ed. NY: Cold Spring Harbor Laboratory Press, 1989. 510 p.
- Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265-75. PubMed
- Titorenko VI, Keizer I, Harder W, Veenhuis M. Isolation and characterization of mutants impaired in the selective degradation of peroxisomes in the yeast Hansenula polymorpha. J Bacteriol. 1995 Jan;177(2):357-63. PubMed, PubMedCentral
- He XJ, Fassler JS. Identification of novel Yap1p and Skn7p binding sites involved in the oxidative stress response of Saccharomyces cerevisiae. Mol Microbiol. 2005 Dec;58(5):1454-67. PubMed, PubMedCentral, CrossRef
- Fujii Y, Shimizu T, Toda T, Yanagida M, Hakoshima T. Structural basis for the diversity of DNA recognition by bZIP transcription factors. Nat Struct Biol. 2000 Oct;7(10):889-93. PubMed, CrossRef
- Chen G, Shin JA. AhR/Arnt:XRE interaction: turning false negatives into true positives in the modified yeast one-hybrid assay. Anal Biochem. 2008 Nov 15;382(2):101-6. PubMed, PubMedCentral, CrossRef
- Zhang L, Savas U, Alexander DL, Jefcoate CR. Characterization of the mouse Cyp1B1 gene. Identification of an enhancer region that directs aryl hydrocarbon receptor-mediated constitutive and induced expression. J Biol Chem. 1998 Feb 27;273(9):5174-83. PubMed, CrossRef
- Baudouin-Cornu P, Labarre J. Regulation of the cadmium stress response through SCF-like ubiquitin ligases: comparison between Saccharomyces cerevisiae, Schizosaccharomyces pombe and mammalian cells. Biochimie. 2006 Nov;88(11):1673-85. Review. PubMed, CrossRef
- Sohn MJ, Ubiyvovk VM, Oh DB. et al.. Book of Abstracts of 12-th International Congress on Yeasts. Yeasts for Human Progress “Reconstruction of sulfur metabolism pathway in Hansenula polymorpha based on transcriptome and metabolite analysis”. Kyiv, Ukraine, 2008. Р. 125.
- Sohn MJ. Global transcriptional response of methylotrophic yeast Hansenula polymorpha to environmental stress and its application: effects of Cd treatment and sulfur limitation: Master’s thesis. Daejeon, Korea, 2006. 70 p.
- Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM. Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell. 2007 Aug;19(8):2653-61. PubMed, PubMedCentral, [ct id=”http://dx.doi.org/10.1105/tpc.107.052597″]
- Baudouin-Cornu P, Lagniel G, Kumar C, Huang ME, Labarre J. Glutathione degradation is a key determinant of glutathione homeostasis. J Biol Chem. 2012 Feb 10;287(7):4552-61. PubMed, PubMedCentral, CrossRef
This work is licensed under a Creative Commons Attribution 4.0 International License.