Tag Archives: glutathione
AUT-M enterosorbent stabilizes glutathione system in vincristine-treated rats with dimethylhydrazine-induced colon cancer
O. I. Kachur*, L. S. Fira, P. H. Lykhatskyі,
I. R. Bekus, M. V. Kyryliv
I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine;
*e-mail: oksana.kachur2012@gmail.com
Received: 15 August 2023; Revised: 17 October 2023;
Accepted: 01 December 2023; Available on-line: 18 December 2023
Colorectal cancer is one of the leading causes of mortality in the world. The search for new methods of therapy for this disease that could correct the state of oxidative stress during the development of neoplasms is up to date. The aim of this work was to study the level of reduced glutathione and the activity of glutathione-dependent enzymes in the development of 1,2 dimethylhydrazine-induced colon cancer in rats while treated with vincristine and the use of enterosorbent. To induce carcinogenesis, dimethylhydrazine was administered to male rats subcutaneously for 30 weeks at a dose of 7.2 mg/kg of body weight. The rats with induced colon cancer received entorosorbent per os at a dose of 0.2 g per 100 g of body weight daily for 21 days. After detoxification therapy, the rats were administered cytostatic vincristine daily at a dose of 0.23 mg/kg for 14 days. A decrease in the content of reduced glutathione, the activity of glutathione reductase and glutathione peroxidase in the blood and liver tissue of rats with colorectal cancer was established. The use of enterosorbent AUT-M was shown to be effective in stabilizing the indicators of the glutathione system in rats with induced colon cancer. Cytostatic vincristine did not significantly affect the change of the studied indicators, confirming the effectiveness of previous sorption measures.
Effect of probiotic composition on oxidative/antioxidant balance in blood of rats under experimental osteoarthritis
O. Korotkyi, K. Dvorshchenko, A. Vovk, A. Dranitsina, M. Tymoshenko, L. Kot, L. Ostapchenko
ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Ukraine;
e-mail: korotky@ukr.net
Received: 20 June 2019; Accepted: 18 October 2019
Osteoarthritis (OA) is a widespread pathology of the musculoskeletal system. OA may associate with a wide range of disorders, that lead to the development of various strategies on how to prevent and treat the disease. Recent studies discussed interactions between the microbiome and a wide range of pathologies, including OA. In this study, we investigated the effect of probiotic cultures on oxidative/antioxidant balance in blood of rats during OA. Experimental OA was induced by a single injection of sodium monoiodoacetate into the knee joint. A probiotic composition (Multiprobiotic Simbiter®) was administered by peroral catheter once per day for 14 days. We investigated the next parameters: expression of Nos2 gene in the blood, superoxide dismutase activity, catalase activity, glutathione peroxidase activity, glutathione transferase activity, glutathione reductase activity, contents of superoxide, hydrogen peroxide, TBA-reactive compounds, oxidized and reduced glutathione in the serum of the blood. Monoiodoacetate-induced OA caused significant changes on oxidative/antioxidant balance in the blood of rats: increasing of the contents of superoxide anion radical, hydrogen peroxide, thiobarbituric acid-reactive compounds, oxidized glutathione, upregulating of Nos2 expression, increasing of catalase activity; conversely, superoxide dismutase activity, glutathione peroxidize activity, glutathione transferase activity, glutathione reductase activity, the content of reduced glutathione were significantly decreased, compared to control group. Administration of probiotics to animals with OA led to positive changes in the studied parameters approaching the values of control group (some of them were statistically significant).
Glutathione influence on energy metabolism in rat liver mitochondria under experimental nephropathy
Ye. O. Ferenchuk, I. V. Gerush
Higher State Educational Establishment of Ukraine “Bukovinian State Medical University”, Chernivtsi;
e-mail: yelena_f@ukr.net
Received: 17 October 2018; Accepted: 14 March 2019
Mitochondrial oxidative damage and disorders of energy metabolism contribute to a wide range of pathologies and disease progression. In our work, the effect of glutathione on the activity of respiratory chain enzymes and the content of free SH-groups in rat liver mitochondria was examined with the use of folic acid-induced nephropathy model. Mitochondria were isolated by differential centrifugation, NADH-dehydrogenase, succinate dehydrogenase, cytochrome oxidase and H+-ATPase activity were determined. The activity of these enzymes and the content of the free SH-groups in the liver were shown to be decreased under conditions of nephropathy, evidently due to the intensification of the free radical processes. The introduction of glutathione increased the content of SH-groups and the activity of the Complexes II and V enzymes of mitochondrial respiratory chain but did not change the activity of cytochrome oxidase in mitochondria isolated from the liver of rats under experimental nephropathy. The results obtained demonstrate a positive effect of glutathione on mitochondrial succinate dehydrogenase and H+-ATPase activity normalization in the liver of rats with nephropathy. These findings may help to extend the understanding of mitochondrial energy metabolism under development of kidney diseases.
Cloning and functional analysis of the GSH1/MET1 gene complementing cysteine and glutathione auxotrophy of the methylotrophic yeast Hansenula polymorpha
V. M. Ubiyvovk1, O.V. Blazhenko1, M. Zimmermann2, M. J. Sohn3,4, H. A. Kang3,4
1Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv;
2Institute of Biology IV- Microbiology and Genetics RWTH, Aachen, Germany;
3Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea;
4Department of Life Science, Chung-Ang University, Seoul, Korea;
e-mail: Oleksandra.Blazhenko@googlemail.com
The Hansenula polymorpha GSH1/MET1 gene was cloned by complementation of glutathione-dependent growth of H. polymorpha gsh1 mutant isolated previously as N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) resistant and cadmium ion sensitive clone. The H. polymorpha GSH1 gene was capable of restoring cadmium ion resistance, MNNG sensitivity, normal glutathione level and cell proliferation on minimal media without addition of cysteine or glutathione, when introduced into the gsh1 mutant cells. It was shown that the H. polymorpha GSH1 gene has homology to the Saccharomyces cerevisiae MET1 gene encoding S-adenosyl-L-methionine uroporphyrinogen III transmethylase, responsible for the biosynthesis of sulfite reductase cofactor, sirohaem. The H. polymorpha GSH1/MET1 gene deletion cassette (Hpgsh1/met1::ScLEU2) was constructed and corresponding null mutants were isolated. Crossing data of the point gsh1 and null gsh1/met1 mutants demonstrated that both alleles were located to the same gene. The null gsh1/met1 mutant showed total growth restoration on minimal media supplemented with cysteine or glutathione as a sole sulfur source, but not with inorganic (sulfate, sulfite) or organic (methionine, S-adenosylmethionine) sources of sulfur. Moreover, both the point gsh1 and null gsh1/met1 mutants displayed increased sensitivity to the toxic carbon substrate methanol, formaldehyde, organic peroxide and cadmium ions.
Antioxidant activity of melatonin and glutathione interacting with hydroxyl- and superoxide anion radicals
T. Y. Kuznetsova1, N. V. Solovyova2, V. V. Solovyov1, V. O. Kostenko2
1Yu.Kondratyuk Poltava National Technical University, Ukraine;
2Ukrainian Medical Stomatological Academy, Poltava;
e-mail: kzt7@ukr.net
Based on the analysis of the results obtained by quantum chemical modeling of interaction between reduced glutathione (GSH) and melatonin (MLT) molecules with oxygen radicals (•OH and • OOˉ) it was found that this interaction occured following the acid-base mechanism, where MLT and GSH acted as a base in respect of •OH, and as acid in respect of •OOˉ. We have carried out the correlation of the results of quantum chemical calculations (density redistribution, energetic characteristics) under the interaction of MLT and GSH molecules with •OH and •OOˉ in changing macroscopic properties of the process of electroreduction of free oxygen radicals in the presence of antioxidants (potential and maximal current wave reduction waves). This was a direct experimental macroscale evidence of the results of theoretical modeling at the nanoscale level that pointed to a marked antioxidant activity of glutathione compared with melatonin.
Biochemical mechanism of the o,p’-DDD effect on the adrenal cortex
A. S. Mikosha, O. I. Kovzun
V. P. Komisarenko Institute of Endocrinology and Metabolism, National Academy of Medical Sciences of Ukraine, Kyiv;
e-mail: asmikosha@gmail.com
o,p’-Dichlorodiphenyldichloroethane (o,p’-DDD, mitotane) is used in the treatment of adrenocortical cancer and Cushing’s disease. This medicine induces numerous biochemical changes in the adrenal cortex, as well as disorder in the mitochondrial structure. Therewith, the level of produced corticosteroid hormones is significantly reduced. One of the possible causes can be a decrease in the NADPH level due to inhibition of the activity of its reduction system and increased NADPH consumption during the glutathione reduction catalyzed by glutathione reductase. o,p’-DDD is partially metabolized in the adrenal glands, and the main metabolite (in terms of quantity) is o,p’-dichlorodiphenylacetic acid. However, attempts to find a physiologically active component among metabolites were unsuccessful. The most pronounced changes caused by o,p’-DDD were found in the mitochondria of the adrenal cortex. The respiration at the level of IV and I complexes is suppressed, the protein content of these complexes decreases. The phospholipid composition of the tissue altered and the concentration of diphosphatidylglycerol, the most important component of mitochondrial membranes, decreased. In our opinion, o,p’-DDD, owing to its high lipophilicity, accumulates in the mitochondria membranes and causes conformational disorder followed by disorder in mitochondrial functions. It was shown that o,p’-DDD acts as an inhibitor of acyl-CoA-cholesterol acyltransferase (ACAT, SOAT1). Therefore, adenocorticocytes accumulate free cholesterol, causing endoplasmic reticulum stress, mitochondrial swelling and caspases activation. Increased apoptosis leads to a decline in adrenal function and to a decrease in weight of adrenal glands.
Transcriptional regulation of the Hansenula polymorpha GSH2 gene in the response to cadmium ion treatment
O. V. Blazhenko, А. B. Kotlyarchuk, V. M. Ubiyvovk
Institute of Cell Biology, National Academy of Science of Ukraine, Lviv;
e-mail: Oleksandra.Blazhenko@googlemail.com
In a previous study we cloned GSH2 gene, encoding γ-glutamylcysteine synthetase (γGCS) in the yeast Hansenula рolymorpha. In this study an analysis of molecular organisation of the H. рolymorpha GSH2 gene promoter was conducted and the potential binding sites of Yap1, Skn7, Creb/Atf1, and Cbf1 transcription factors were detected. It was established that full regulation of GSH2 gene expression in the response to cadmium and oxidative stress requires the length of GSH2 promoter to be longer than 450 bp from the start of translation initiation. To study the transcriptional regulation of H. polymorpha GSH2 gene recombinant strain, harbouring a reporter system, in which 1.832 kb regulatory region of GSH2 gene was fused to structural and terminatory regions of alcohol oxidase gene, was constructed. It was shown that maximum increase in H. polymorpha GSH2 gene transcription by 33% occurs in the rich medium under four-hour incubation with 1 μM concentration of cadmium ions. In the minimal medium the GSH2 gene expression does not correlate with the increased total cellular glutathione levels under cadmium ion treatment. We assume that the increased content of total cellular glutathione under cadmium stress in the yeast H. polymorpha probably is not controlled on the level of GSH2 gene transcription.







