Ukr.Biochem.J. 2020; Volume 92, Issue 6, Nov-Dec, pp. 126-136

doi: https://doi.org/10.15407/ubj92.06.126

Oxidative/antioxidant balance and matrix metalloproteinases level in the knee cartilage of rats under experimental osteoarthritis and probiotic administration

O. Korotkyi*, K. Dvorshchenko, L. Kot,
T. Vovk, M. Tymoshenko, L. Ostapchenko

ESC “Institute of Biology and Medicine”,
Taras Shevchenko National University of Kyiv, Ukraine;
*e-mail: korotkyi@gmail.com

Received: 28 June 2020; Accepted: 13 November 2020

The aim of this work was to investigate the effect of the poly-strain probiotic on oxidative-antioxidant balance and the level of matrix metalloproteinases (MMPs) in rat knee cartilage under experimental osteoarthritis. Osteoarthritis was induced by a single injection of monoiodoacetate into the knee joint of rats. Probiotic was administered daily for 14 days. Knee cartilages homogenate was used to evaluate  the content of reactive oxygen species (superoxide anion and hydrogen peroxide), products of lipids peroxidation (diene conjugates, TBA-active compound, Shiff bases), to determine superoxide dismutase and catalase activity and activity of glutathione-dependent  antioxidant enzymes, the level of reduced and oxidized glutathione. The level of MMPs -1, -2, -3, -8 expression was estimated by ELISA. Osteoarthritis was found to cause a significant increase in the reactive oxygen species level, lipid peroxidation products content, superoxide dismutase and catalase activity, level of all studied MMPs, and also depletion of glutathione-dependent antioxidant system and the decrease in the ratio between reduced and oxidized glutathione.The administration of the probiotic was followed by the tendency for the restoration of the parameters to the values of the control group. Thus, the administration of the probiotic to rats with osteoarthritis may be considered as an anti-inflammatory and antioxidant agent for further clinical trials.

Keywords: , , , ,


References:

  1. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019;393(10182):1745-1759. PubMed, CrossRef
  2. O’Neill TW, McCabe PS, McBeth J. Update on the epidemiology, risk factors and disease outcomes of osteoarthritis. Best Pract Res Clin Rheumatol. 2018;32(2):312-326. PubMed, CrossRef
  3. Korotkyi O, Kyriachenko Y, Kobyliak N, Falalyeyeva T, Ostapchenko L. Crosstalk between gut microbiota and osteoarthritis: A critical view. J Funct Foods. 2020; 68: 103904. CrossRef
  4. Man GS, Mologhianu G. Osteoarthritis pathogenesis – a complex process that involves the entire joint. J Med Life. 2014;7(1):37-41. PubMed, PubMedCentral
  5. Vitetta L, Coulson S, Linnane AW, Butt H. The gastrointestinal microbiome and musculoskeletal diseases: a beneficial role for probiotics and prebiotics. Pathogens. 2013;2(4):606-626. PubMed, PubMedCentral, CrossRef
  6. Bravo-Blas A, Wessel H, Milling S. Microbiota and arthritis: correlations or cause? Curr Opin Rheumatol. 2016;28(2):161-167. PubMed, CrossRef
  7. Fomenko I, Bondarchuk T, Emelyanenko V, Denysenko N, Sklyarov P, Ilkiv I, Lesyk R, Sklyarov A. Changes of nitric oxide system and lipid peroxidation parameters in the digestive system of rats under conditions of acute stress, and use of nonsteroidal anti-inflammatory drugs. Curr Issues Pharm Med Sci. 2015; 28(1): 37-41. CrossRef
  8. Korotkyi OH, Luhovska TV, Serhiychuk TM, Dvorshchenko KO, Falalyeyeva TM, Ostapchenko LI. The gut microbiota of rats under experimental osteoarthritis and administration of chondroitin sulfate and probiotic. Mikrobiol Z. 2020; 82(6): 64-73.  CrossRef
  9. Dvorshchenko KO, Bernyk OO, Dranitsina AS, Senin SA, Ostapchenko LI. Influence of oxidative stress on the level of genes expression TGFB1 and HGF in rat liver upon long-term gastric hypochlorhydria and administration of multiprobiotic Symbiter. Ukr Bikhim Zhurn. 2013;85(5):114-123. (In Ukrainian). PubMed, CrossRef
  10. Dvorshchenko KO, Vakal SI, Dranitsina AS, Senin SA, Ostapchenko LI. Stress-responsive systems in rat pancreas upon long-term gastric hypochlorhydria and administration of multiprobiotic “Symbiter”. Ukr Biokhim Zhurn. 2013;85(2):68-77. (In Ukrainian).  PubMed, CrossRef
  11. Korotkyi O, Dvorshchenko K, Falalyeyeva T, Sulaieva O, Kobyliak N, Abenavoli L, Fagoonee S, Pellicano R, Ostapchenko L. Combined effects of probiotic and chondroprotector during osteoarthritis in rats. Panminerva Med. 2020;62(2):93-101. PubMed, CrossRef
  12. Drevet S, Gavazzi G, Grange L, Dupuy C, Lardy B. Reactive oxygen species and NADPH oxidase 4 involvement in osteoarthritis. Exp Gerontol. 2018;111:107-117. PubMed, CrossRef
  13. Baragi VM, Becher G, Bendele AM, Biesinger R, Bluhm H, Boer J, Deng H, Dodd R, Essers M, Feuerstein T, Gallagher  BM Jr, Gege C, Hochgürtel M, Hofmann M, Jaworski A, Jin L, Kiely A, Korniski B, Kroth H, Nix D, Nolte B, Piecha D, Powers TS, Richter F, Schneider M, Steeneck C, Sucholeiki I, Taveras A, Timmermann A,  Van Veldhuizen J,  Weik J, Wu X, Xia B. A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: Evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models. Arthritis Rheum. 2009;60(7):2008-2018. PubMed, CrossRef
  14. Mehana EE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci. 2019;234:116786. PubMed, CrossRef
  15. Korotkyi O, Vovk A, Galenova T, Vovk T, Dvorshchenko K, Luzza F, Abenavoli L, Kobyliak N, Falalyeyeva T, Ostapchenko L. Effect of probiotic on serum cytokines and matrix metalloproteinases profile during monoiodoacetate-induced osteoarthritis in rats. Minerva Biotecnol. 2019;31(2):68-73. CrossRef
  16. Korotkyi O, Dvorshchenko K, Vovk A, Dranitsina A, Tymoshenko M, Kot L, Ostapchenko L. Effect of probiotic composition on oxidative/antioxidant balance in blood of rats under experimental osteoarthritis. Ukr Biochem J. 2019; 91(6): 49-58. CrossRef
  17. Guzman RE, Evans MG, Bove S, Morenko B, Kilgore K. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol Pathol. 2003;31(6):619-624. PubMed, CrossRef
  18. Multiprobiotic Symbiter acidophilus. Regime of access : https://symbiter.ua/uk/multiprobiotics-symbiter-ua/symbiter-acidophilic-ua.html (last accessed 17.07.2020).
  19. Able AJ, Guest DI, Sutherland MW. Use of a new tetrazolium-based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of phytophthora parasitica var nicotianae. Plant Physiol. 1998;117(2):491-499. PubMed, PubMedCentral, CrossRef
  20. Jiang ZY, Woollard AC, Wolff SP. Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 1990;268(1):69-71. PubMed, CrossRef
  21. Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolff SP. Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem. 1994;220(2):403-409.  PubMed, CrossRef
  22. Gavrilov VB, Gavrilova AR, Khmara NF. Measurement of diene conjugates in blood plasma using the UV absorption of heptane and isopropanol extracts. Lab Delo. 1988;(2):60-64. (In Russian).  PubMed
  23.  Kolesova OE, Markin AA, Fedorova TN. Lipid peroxidation and methods of determining its products in biological media. Lab Delo. 1984;(9):540-546. (In Russian). PubMed
  24. Stalnaia ID, Garishvili TG. A method for determination of malondialdehyde with tiobarbituric acid. Modern methods in biochemistry. M.: Meditsina, 1977. P. 66-68 (In Russian).
  25. Chevari S, Chaba I, Sekei I. Role of superoxide dismutase in cellular oxidative processes and method of its determination in biological materials. Lab Delo. 1985;(11):678-681. (In Russian). PubMed
  26. Koroliuk MA, Ivanova LK, Maiorova IG, Tokarieva VA. A method for determination of catalase. Lab Delo. 1988;(4): 44-47. (In Russian).
  27. Vlasova SN, Shabunina EI, Pereslegina IA.The activity of the glutathione-dependent enzymes of erythrocytes in chronic liver diseases in children. Lab Delo. 1990;(8):19-22. (In Russian).  PubMed
  28. Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74(1):214-226. PubMed, CrossRef
  29. Mokrasch LC, Teschke EJ. Glutathione content of cultured cells and rodent brain regions: a specific fluorometric assay. Anal Biochem. 1984;140(2):506-509. PubMed, CrossRef
  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275. PubMed
  31. Malfait AM. Osteoarthritis year in review 2015: biology. Osteoarthritis Cartilage. 2016;24(1):21-26. PubMed, PubMedCentral, CrossRef
  32. Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta. 2016;1862(4):576-591. PubMed, CrossRef
  33. Afonso V, Champy R, Mitrovic D, Collin P, Lomri A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine. 2007;74(4):324-329. PubMed, CrossRef
  34. Na JY, Song K, Kim S, Kwon J. Rutin protects rat articular chondrocytes against oxidative stress induced by hydrogen peroxide through SIRT1 activation. Biochem Biophys Res Commun. 2016;473(4):1301-1308. PubMed, CrossRef
  35. Xue L, Li X, Chen Q, He J, Dong Y, Wang J, Shen S, Jia R, Zang QJ, Zhang T, Li M, Geng Y. Associations between D3R expression in synovial mast cells and disease activity and oxidant status in patients with rheumatoid arthritis. Clin Rheumatol. 2018;37(10):2621-2632. PubMed, CrossRef
  36. Yin G, Li Y, Yang M, Cen XM, Xie QB. Pim-2/mTORC1 Pathway Shapes Inflammatory Capacity in Rheumatoid Arthritis Synovial Cells Exposed to Lipid Peroxidations. Biomed Res Int. 2015;2015:240210. PubMed, PubMedCentral, CrossRef
  37. Shan L, Tong L, Hang L, Fan H. Fangchinoline supplementation attenuates inflammatory markers in experimental rheumatoid arthritis-induced rats. Biomed Pharmacother. 2019;111:142-150. PubMed, CrossRef
  38. Rieder B, Weihs AM, Weidinger A, Szwarc D, Nürnberger S, Redl H, Rünzler D, Huber-Gries C, Teuschl AH. Hydrostatic pressure-generated reactive oxygen species induce osteoarthritic conditions in cartilage pellet cultures. Sci Rep. 2018;8(1):17010. PubMed, PubMedCentral, CrossRef
  39. van Dalen SCM, Kruisbergen NNL, Walgreen B, Helsen MMA, Slöetjes AW, Cremers NAJ, Koenders MI, van de Loo FAJ, Roth J, Vogl T, Blom AB, van der Kraan PM, van Lent PLEM, van den Bosch MHJ. The role of NOX2-derived reactive oxygen species in collagenase-induced osteoarthritis. Osteoarthritis Cartilage. 2018;26(12):1722-1732.  PubMed, CrossRef
  40. Abusarah J, Bentz M, Benabdoune H, Rondon PE, Shi Q, Fernandes JC, Fahmi H, Benderdour M. An overview of the role of lipid peroxidation-derived 4-hydroxynonenal in osteoarthritis. Inflamm Res. 2017;66(8):637-651. PubMed, CrossRef
  41. Vnukov VV, Krolevets IV, Milutina NP, Gutsenko OI, Zabrodin MA, Panina SB, Gvaldin DYu, Plotbikov AA, Shevyakova EA,Braznikov YuI. Free radical oxidation in synovial fluid and apoptosis of chondrocytes in osteoarthritis of knee. Valeology. 2012;(4):38-44. (In Russian).
  42. Wu Q, Zhong ZM, Zhu SY, Liao CR, Pan Y, Zeng JH, Zheng S, Ding RT, Lin QS, Ye Q, Ye WB, Li W, Chen JT. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway. Apoptosis. 2016;21(1):36-50. PubMed, CrossRef
  43. He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species.  Cell Physiol Biochem. 2017;44(2):532-553. PubMedCrossRef
  44. Zahan OM, Serban O, Gherman C, Fodo D. The evaluation of oxidative stress in osteoarthritis. Med Pharm Rep. 2020;93(1):12-22. PubMed, PubMedCentral,CrossRef
  45. Iolascon G, Gimigliano F, Moretti A, de Sire A, Migliore A, Brandi ML, Piscitelli P. Early osteoarthritis: How to define, diagnose, and manage. A systematic review. Eur Geriatr Med. 2017;8(5-6): 383-396. CrossRef
  46. Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017; 147: 1-73. CrossRef
  47. Li H, Xie S, Qi Y, Li H, Zhang R, Lian Y. TNF-α increases the expression of inflammatory factors in synovial fibroblasts by inhibiting the PI3K/AKT pathway in a rat model of monosodium iodoacetate-induced osteoarthritis. Exp Ther Med. 2018;16(6):4737-4744. PubMed, PubMedCentral, CrossRef
  48. Malemud CJ. Matrix Metalloproteinases and Synovial Joint Pathology. Prog Mol Biol Transl Sci. 2017;148:305-325. PubMed, CrossRef
  49. Korotkyi O, Vovk A, Blokhina O, Dvorshchenko K, Falalyeyeva T, Abenavoli L, Ostapchenko L. Effect of Chondroitin Sulfate on Blood Serum Cytokine Profile during Carrageenan-induced Edema and Monoiodoacetate-induced Osteoarthritis in Rats. Rev Recent Clin Trials. 2019;14(1):50-55.
    PubMed, CrossRef
  50. Dranitsina AS, Dvorshchenko KO, Korotkyi AG, Grebinyk DM, Ostapchenko LI. Expression of Ptgs2 and Tgfb1 Genes in Rat Cartilage Cells of the Knee under Conditions of Osteoarthritis. Cytol Genet. 2018;52(3): 192-197. CrossRef
  51. Dranitsina AS, Dvorshchenko KO, Korotkyi OH, Vovk AA, Falalyeyeva TM, Grebinyk DM, Ostapchenko LI. Expression of Nos2 and Acan Genes in Rat Knee Articular Cartilage in Osteoarthritis. Cytol Genet. 2019; 53(6): 481-488. CrossRef
  52. Korotkyi OH, Vovk AA, Dranitsina AS, Falalyeyeva TM, Dvorshchenko KO, Fagoonee S, Ostapchenko LI. The influence of probiotic diet and chondroitin sulfate administration on Ptgs2, Tgfb1 and Col2a1 expression in rat knee cartilage during monoiodoacetate-induced osteoarthritis. Minerva Med. 2019;110(5):419-424. PubMed, PubMedCentral, CrossRef
  53. Korotkyi O, Vovk A, Kuryk O, Dvorschenko K, Falalyeyeva T, Ostapchenko L. Co-administration of live probiotics with chondroprotector in management of experimental knee osteoarthritis. Georgian Med News. 2018;(279):191-196. PubMed
  54. Korotkyi OH, Vovk AA, Halenova TI, Vovk TB, Dvorshchenko KO, Falalyeyeva TM, Ostapchenko LI. Cytokines profile in knee cartilage of rats during monoiodoacetate-induced osteoarthritis and administration of probiotic. Biopolym Cell. 2020;36(1):22-34. CrossRef
  55. Kompanets I, Korotkiy A, Karpovets T, Ostapchenko L, Pilipenko S, Yankovskiy D. The interferon production and 2′,5′-oligoadenylate-synthetase activity in rat spleen lymphocytes at hypoacidity evoked by omeprazole injection and at administration of multiprobiotic «SYMBITER®». Curr Issues Pharma Med Sci. 2013; 26(4): 398-400. CrossRef
  56. Xu C, Shi Z, Shao J, Yu C, Xu Z. Metabolic engineering of Lactococcus lactis for high level accumulation of glutathione and S-adenosyl-L-methionine. World J Microbiol Biotechnol. 2019;35(12):185. PubMed, CrossRef
  57. Wieërs G, Belkhir L, Enaud R, Leclercq S, Philippart de Foy JM, Dequenne I6 , de Timary P, Cani PD. How Probiotics Affect the Microbiota. Front Cell Infect Microbiol. 2020;9:454. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.