Ukr.Biochem.J. 2019; Volume 91, Issue 6, Nov-Dec, pp. 49-58

doi: https://doi.org/10.15407/ubj91.06.049

Effect of probiotic composition on oxidative/antioxidant balance in blood of rats under experimental osteoarthritis

O. Korotkyi, K. Dvorshchenko, A. Vovk, A. Dranitsina, M. Tymoshenko, L. Kot, L. Ostapchenko

ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Ukraine;
e-mail: korotky@ukr.net

Received: 20 June 2019; Accepted: 18 October 2019

Osteoarthritis (OA) is a widespread pathology of the musculoskeletal system. OA may associate with a wide range of disorders, that lead to the development of various strategies on how to prevent and treat the disease. Recent studies discussed interactions between the microbiome and a wide range of pathologies, including OA. In this study, we investigated the effect of probiotic cultures on oxidative/antioxidant balance in blood of rats during OA. Experimental OA was induced by a single injection of sodium monoiodoacetate into the knee joint. A probiotic composition (Multiprobiotic Simbiter®) was administered by peroral catheter once per day for 14 days. We investigated the next parameters: expression of Nos2 gene in the blood, superoxide dismutase activity, catalase activity, glutathione peroxidase activity, glutathione transferase activity, glutathione reductase activity, contents of superoxide, hydrogen peroxide, TBA-reactive compounds, oxidized and reduced glutathione in the serum of the blood. Monoiodoacetate-induced OA caused significant changes on oxidative/antioxidant balance in the blood of rats: increasing of the contents of superoxide anion radical, hydrogen peroxide, thiobarbituric acid-reactive compounds, oxidized glutathione, upregulating of Nos2 expression, increasing of catalase activity; conversely, superoxide dismutase activity, glutathione peroxidize activity, glutathione transferase activity, glutathione reductase activity, the content of reduced glutathione were significantly decreased, compared to control group. Administration of probiotics to animals with OA led to positive changes in the studied parameters approaching the values of control group (some of them were statistically significant).

Keywords: , , ,


References:

  1. Man GS, Mologhianu G. Osteoarthritis pathogenesis – a complex process that involves the entire joint. J Med Life. 2014 Mar 15;7(1):37-41. PubMed, PubMedCentral
  2. O’Neill TW, McCabe PS, McBeth J. Update on the epidemiology, risk factors and disease outcomes of osteoarthritis. Best Pract Res Clin Rheumatol. 2018 Apr;32(2):312-326. PubMed, CrossRef
  3. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019 Apr 27;393(10182):1745-1759. PubMed, CrossRef
  4. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180-3. PubMed, PubMed, CrossRef
  5. Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 2014 Dec 5;224:164-75. PubMed, CrossRef
  6. Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta. 2016 Apr;1862(4):576-591. PubMed, CrossRef
  7. Ziskoven C, Jäger M, Zilkens C, Bloch W, Brixius K, Krauspe R. Oxidative stress in secondary osteoarthritis: from cartilage destruction to clinical presentation? Orthop Rev (Pavia). 2010 Sep 23;2(2):e23. PubMed, PubMed, CrossRef
  8. Quiñonez-Flores CM, González-Chávez SA, Del Río Nájera D, Pacheco-Tena C. Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: a systematic review. Biomed Res Int. 2016;2016:6097417. PubMed, PubMed, CrossRef
  9. Gyuraszova M, Kovalcikova A, Gardlik R. Association between oxidative status and the composition of intestinal microbiota along the gastrointestinal tract. Med Hypotheses. 2017 Jun;103:81-85. PubMed, CrossRef
  10. Szychlinska MA, Di Rosa M, Castorina A, Mobasheri A, Musumeci G. A correlation between intestinal microbiota dysbiosis and osteoarthritis. Heliyon. 2019 Jan 12;5(1):e01134. PubMed, PubMed, CrossRef
  11. Bravo-Blas A, Wessel H, Milling S. Microbiota and arthritis: correlations or cause? Curr Opin Rheumatol. 2016 Mar;28(2):161-7. PubMed, CrossRef
  12. Vitetta L, Coulson S, Linnane AW, Butt H. The gastrointestinal microbiome and musculoskeletal diseases: a beneficial role for probiotics and prebiotics. Pathogens. 2013 Nov 14;2(4):606-26. PubMed, PubMed, CrossRef
  13. Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol. 2015 Dec;52(12):7577-87. PubMed, PubMed, CrossRef
  14. Savcheniuk O, Kobyliak N, Kondro M, Virchenko O, Falalyeyeva T, Beregova T. Short-term periodic consumption of multiprobiotic from childhood improves insulin sensitivity, prevents development of non-alcoholic fatty liver disease and adiposity in adult rats with glutamate-induced obesity. BMC Complement Altern Med. 2014 Jul 16;14:247. PubMed, PubMed, CrossRef
  15. Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity-associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci. 2013 May 21;14(5):10497-538. PubMed, PubMed, CrossRef
  16. Kobyliak N, Falalyeyeva T, Mykhalchyshyn G, Kyriienko D, Komissarenko I. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial. Diabetes Metab Syndr. 2018 Sep;12(5):617-624. PubMed, CrossRef
  17. Asemi Z, Zare Z, Shakeri H, Sabihi SS, Esmaillzadeh A. Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. Ann Nutr Metab. 2013;63(1-2):1-9. PubMed, CrossRef
  18. Henrotin Y, Lambert C, Couchourel D, Ripoll C, Chiotelli E. Nutraceuticals: do they represent a new era in the management of osteoarthritis? – a narrative review from the lessons taken with five products. Osteoarthritis Cartilage. 2011 Jan;19(1):1-21. PubMed, CrossRef
  19. Abdollahi-Roodsaz S, Abramson SB, Scher JU. The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Nat Rev Rheumatol. 2016 Aug;12(8):446-55. PubMed, CrossRef
  20. Yousefi B, Eslami M, Ghasemian A, Kokhaei P, Sadeghnejhad A. Probiotics can really cure an autoimmune disease? Gene Rep. 2019;15:100364. CrossRef
  21. Kothari D, Patel S, Kim SK. Probiotic supplements might not be universally-effective and safe: A review. Biomed Pharmacother. 2019 Mar;111:537-547. PubMed, CrossRef
  22. Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res. 2016 Feb 2;11(1):19.  PubMed, PubMedCentral, CrossRef
  23. Takahashi I, Matsuzaki T, Kuroki H, Hoso M. Induction of osteoarthritis by injecting monosodium iodoacetate into the patellofemoral joint of an experimental rat model. PLoS One. 2018 Apr 26;13(4):e0196625. PubMed, PubMedCentral, CrossRef
  24. Portal-Núñez S, Esbrit P, Alcaraz MJ, Largo R. Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis. Biochem Pharmacol. 2016 May 15;108:1-10. PubMed, CrossRef
  25. Korotkyi O, Vovk A, Kuryk O, Dvorshchenko K, Falalyeyeva T, Ostapchenko L. Co-administration of live probiotics with chondroprotector in management of experimental knee osteoarthritis. Georgian Med News. 2018 Jun;(279):191-196. PubMed
  26. Korotkyi O, Vovk A, Blokhina O, Dvorshchenko K, Falalyeyeva T, Abenavoli L, Ostapchenko L. Effect of chondroitin sulfate on blood serum cytokine profile during carrageenan-induced edema and monoiodoacetate-induced osteoarthritis in rats. Rev Recent Clin Trials. 2019;14(1):50-55. PubMed, CrossRef
  27. Guzman RE, Evans MG, Bove S, Morenko B, Kilgore K. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol Pathol. 2003 Nov-Dec;31(6):619-24. PubMed, CrossRef
  28. Regime of access :  https://symbiter.ua/uk/multiprobiotics-symbiter-ua/symbiter-acidophilic-ua.html.
  29. Flannery J, Rajko-Nenow P, Hicks H, Hill H, Gubbins S, Batten C. Evaluating the most appropriate pooling ratio for EDTA blood samples to detect Bluetongue virus using real-time RT-PCR. Vet Microbiol. 2018 Apr;217:58-63. PubMed, PubMedCentral, CrossRef
  30. Able AJ, Guest DI, Sutherland MW. Use of a new tetrazolium-based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of phytophthora parasitica var nicotianae. Plant Physiol. 1998 Jun;117(2):491-9. PubMed, PubMedCentral, CrossRef
  31. Jiang ZY, Woollard AC, Wolff SP. Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 1990 Jul 30;268(1):69-71. PubMed, CrossRef
  32. Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolff SP. Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem. 1994 Aug 1;220(2):403-9. PubMed, CrossRef
  33. Stalnaia ID, Garishvili TG. A method for determination of malondialdehyde with tiobarbituric acid. Modern methods in biochemistry. M.: Meditsina, 1977. pp. 66-68 (In Russian).
  34. Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc. 2006;1(2):581-5. PubMed, CrossRef
  35. Chevari S, Chaba I, Sekei I. The role of superoxide dismutase in the oxidative processes of the cell and the method for its determination in biological materials. Lab Delo. 1985;(11):678-81. (In Russian). PubMed
  36. Koroliuk MA, Ivanova LK, Maiorova IG, Tokarieva VA. A method for determination of catalase. Lab Delo. 1988;(4):44-47. (In Russian).
  37. Vlasova SN, Shabunina EI, Pereslagina IA. The activity of the glutathione-dependent enzymes of erythrocytes in chronic liver diseases in children. Lab Delo. 1990;(8):19-22. (In Russian). PubMed
  38. Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976 Jul;74(1):214-26.
    PubMed, CrossRef
  39. Mokrasch LC, Teschke EJ. Glutathione content of cultured cells and rodent brain regions: a specific fluorometric assay. Anal Biochem. 1984 Aug 1;140(2):506-9. PubMed, CrossRef
  40. Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem. 2014 Feb;395(2):203-30. PubMed, CrossRef
  41. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015 Jun 5;97:55-74. PubMed, CrossRef
  42. Jha JC, Ho F, Dan C, Jandeleit-Dahm K. A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clin Sci (Lond). 2018 Aug 30;132(16):1811-1836. PubMed, CrossRef
  43. Ziskoven C, Jäger M, Kircher J, Patzer T, Bloch W, Brixius K, Krauspe R. Physiology and pathophysiology of nitrosative and oxidative stress in osteoarthritic joint destruction. Can J Physiol Pharmacol. 2011 Jul;89(7):455-66. PubMed, CrossRef
  44. Gottfredsen RH, Larsen UG, Enghild JJ, Petersen SV. Hydrogen peroxide induce modifications of human extracellular superoxide dismutase that results in enzyme inhibition. Redox Biol. 2013 Jan 11;1(1):24-31. PubMed, PubMedCentral, CrossRef
  45. Jung O, Marklund SL, Xia N, Busse R, Brandes RP. Inactivation of extracellular superoxide dismutase contributes to the development of high-volume hypertension. Arterioscler Thromb Vasc Biol. 2007 Mar;27(3):470-7. PubMed, CrossRef
  46. Demicheli V, Moreno DM, Radi R. Human Mn-superoxide dismutase inactivation by peroxynitrite: a paradigm of metal-catalyzed tyrosine nitration in vitro and in vivo. Metallomics. 2018 May 23;10(5):679-695. PubMed, CrossRef
  47. Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med. 2016 Jun;95:27-42. PubMed, CrossRef
  48. Dominko K, Đikić D. Glutathionylation: a regulatory role of glutathione in physiological processes. Arh Hig Rada Toksikol. 2018 Mar 1;69(1):1-24. PubMed, CrossRef
  49. Adly AAM. Oxidative stress and disease: an updated review. Res J Immunol. 2010; 3(2): 129-145. CrossRef
  50. Allocati N, Masulli M, Di Ilio C, Federici L. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis. 2018 Jan 24;7(1):8. PubMed, PubMedCentral, CrossRef
  51. Singhal SS, Singh SP, Singhal P, Horne D, Singhal J, Awasthi S. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling. Toxicol Appl Pharmacol. 2015 Dec 15;289(3):361-70. PubMed, PubMedCentral, CrossRef
  52. Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, Wu JZ, Dan C, Feng J. Glutathione S-transferase π: a potential role in antitumor therapy. Drug Des Devel Ther. 2018 Oct 23;12:3535-3547. PubMed, PubMedCentral, CrossRef
  53. Lutgendorff F, Nijmeijer RM, Sandström PA, Trulsson LM, Magnusson KE, Timmerman HM, van Minnen LP, Rijkers GT, Gooszen HG, Akkermans LM, Söderholm JD. Probiotics prevent intestinal barrier dysfunction in acute pancreatitis in rats via induction of ileal mucosal glutathione biosynthesis. PLoS One. 2009;4(2):e4512. PubMed, PubMedCentral, CrossRef
  54. García-Giménez JL, Romá-Mateo C, Pérez-Machado G, Peiró-Chova L, Pallardó FV. Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radic Biol Med. 2017 Nov;112:36-48. PubMed, CrossRef
  55. Teskey G, Abrahem R, Cao R, Gyurjian K, Islamoglu H, Lucero M, Martinez A, Paredes E, Salaiz O, Robinson B, Venketaraman V. Glutathione as a marker for human disease. Adv Clin Chem. 2018;87:141-159. PubMed, CrossRef
  56. Korotkyi O, Vovk A, Galenova T, Vovk T, Dvorschenko K, Luzza F, Abenavoli L, Kobyliak N, Falalyeyeva T, Ostapchenko L. Effect of probiotic on serum cytokines and matrix metalloproteinases profiles during monoiodoacetate-induced osteoarthritis in rats. Minerva Biotecnol. 2019;31(2):68-73. CrossRef
  57. Dranitsina AS, Dvorshchenko KO, Korotkiy AG, Grebinyk DM, Ostapchenko LI. Expression of Ptgs2 and Tgfb1 genes in rat cartilage cells of the knee under conditions of osteoarthritis. Cyt Gen. 2018;52(3):192-197. CrossRef
  58. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of action of probiotics. Adv Nutr. 2019;10(S1):S49-66. CrossRef
  59. Vaghef-Mehrabany E, Homayouni-Rad A, Alipour B, Sharif SK, Vaghef-Mehrabany L, Alipour-Ajiry S. Effects of probiotic supplementation on oxidative stress undices in women with rheumatoid arthritis: a randomized double-blind clinical trial. J Am Coll Nutr. 2016 May-Jun;35(4):291-9. PubMed, CrossRef
  60. Liu X, Zeng B, Zhang J, Li W, Mou F, Wang H, Zou Q, Zhong B, Wu L, Wei H, Fang Y. Role of the gut microbiome in modulating arthritis progression in mice. Sci Rep. 2016 Aug 2;6:30594. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.