Ukr.Biochem.J. 2015; Volume 87, Issue 3, May-Jun, pp. 116-123


Distribution of glial fibrillary acidic protein in different parts of the rat brain under cadmium exposure

Yu. P. Kovalchuk1, I. V. Prischepa1, U. Si2, V. S. Nedzvetsky1,
Y. G. Kot2, E. E. Persky2, G. A. Ushakova1

1Oles’ Honchar Dnepropetrovsk National University, Ukraine;
2V. N. Karazin  Kharkiv National University, Ukraine;

The chronic effects of low doses of cadmium on the distribution of soluble and filament forms of glial fibrillary acidic protein (GFAP) and their polypeptide fragments in different parts of the rat brain were investigated. Obtained results showed dose-dependent effect of cadmium on the soluble form of GFAP and more pronounced effect on the filament form and composition of the polypeptide fragments of the protein in the rat brain. Prolonged intoxication by cadmium ions in a dose of 1.0 µg/kg of body weight induced a significant decrease in soluble GFAP and an increase in the filament form in the rat brain, pointing to the development of reactive astrogliosis and the risk of neurodegeneration.

Keywords: , ,


  1. Egorov YL, Kirillov VF. Ecological significance and hygienic regulation of lead and cadmium contents in various medium. Occupational Medicine and Industrial Ecology. 1996;(10):18-25. (In Russian).
  2. Mihaleva L. M. Pathological anatomy of experimental intoxication caused by cadmium chloride. Avtoref. dis. kand. med. nauk. М.: 1990. 14.00.15. 31 p. (In Russian).
  3. Rai A, Maurya SK, Sharma R, Ali S. Down-regulated GFAPα: a major player in heavy metal induced astrocyte damage. Toxicol Mech Methods. 2013 Feb;23(2):99-107. PubMed, CrossRef
  4. Sarchielli E, Pacini S, Morucci G, Punzi T, Marini M, Vannelli GB, Gulisano M. Cadmium induces alterations in the human spinal cord morphogenesis. Biometals. 2012 Feb;25(1):63-74. PubMed, CrossRef
  5. Notarachille G, Arnesano F, Calò V, Meleleo D. Heavy metals toxicity: effect of cadmium ions on amyloid beta protein 1-42. Possible implications for Alzheimer’s disease. Biometals. 2014 Apr;27(2):371-88. PubMed, CrossRef
  6. Yuan Y, Jiang CY, Xu H, Sun Y, Hu FF, Bian JC, Liu XZ, Gu JH, Liu ZP. Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway. PLoS One. 2013 May 31;8(5):e64330. Print 2013. PubMed, PubMedCentral, CrossRef
  7. Hossain S, Liu HN, Nguyen M, Shore G, Almazan G. Cadmium exposure induces mitochondria-dependent apoptosis in oligodendrocytes. Neurotoxicology. 2009 Jul;30(4):544-54. PubMed, CrossRef
  8. Eddleston M, Mucke L. Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience. 1993 May;54(1):15-36. Review. PubMed, CrossRef
  9. Ridet JL, Privat A, Malhotra SK,  Gage FH. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 1997 Dec;20(12):570-7. Review. PubMed, CrossRef
  10. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009 Dec;32(12):638-47. Review. PubMedPubMedCentral, CrossRef
  11. O’Callaghan JP, Jensen KF, Miller DB. Quantitative aspects of drug and toxicant-induced astrogliosis. Neurochem Int. 1995 Feb;26(2):115-24. Review. PubMed, CrossRef
  12. O’Callaghan JP, Sriram K. Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Expert Opin Drug Saf. 2005 May;4(3):433-42. Review. PubMed, CrossRef
  13. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res. 2000 Oct;25(9-10):1439-51. Review. PubMed, CrossRef
  14. Lepekhin EA, Eliasson C, Berthold CH, Berezin V, Bock E, Pekny M. Intermediate filaments regulate astrocyte motility. J Neurochem. 2001 Nov;79(3):617-25. PubMed, CrossRef
  15. Pierozan P, Zamoner A, Soska ÂK, de Lima BO, Reis KP, Zamboni F, Wajner M, Pessoa-Pureur R. Signaling mechanisms downstream of quinolinic acid targeting the cytoskeleton of rat striatal neurons and astrocytes. Exp Neurol. 2012 Jan;233(1):391-9.  PubMed, CrossRef
  16. Sergi C, Abdualmjid R, Abuetabh Y. Canine liver transplantation model and the intermediate filaments of the cytoskeleton of the hepatocytes. J Biomed Biotechnol. 2012;2012:131324. Review. PubMed, PubMedCentral, CrossRef
  17. Physician ethics and human rights: the provisions for the use of animals in biomedical research. Exp Clin Physiol Biochem. 2003;22(2):108-109. (In Ukrainian).
  18. Fomenko OZ, Ushakova HO, Pierzynowski SG. Proteins of astroglia in the rat brain under experimental chronic hepatitis and 2-oxoglutarate effect. Ukr Biokhim Zhurn. 2011 Jan-Feb;83(1):69-76. Ukrainian. PubMed
  19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72(1-2):248-54. PubMed, CrossRef
  20. Tykhomyrov AA, Nedzvetsky VS, Klochkov VK, Andrievsky GV. Nanostructures of hydrated C60 fullerene (C60HyFn) protect rat brain against alcohol impact and attenuate behavioral impairments of alcoholized animals. Toxicology. 2008 Apr 18;246(2-3):158-65.  PubMed, CrossRef
  21. Nedzvetskiy VS, Nerush PA. Hyperthyreosis effects on the learning, memory and glial intermediate filaments of a rat brain. Int J Physiol Pathophysiol. 2011;2(3):269-278. CrossRef
  22. Sarkar S., Yadav P., Bhatnagar D. Cadmiuminduced lipid peroxidation and the antioxidant system in rat erythrocytes: the role of antioxidants. J Trace Elem Med Biol. 1997;11(1):8-13. PubMed, CrossRef
  23. Eng HL, Chen YS, Jawan B, Cheng YF, Chiang YC, Chen WJ, Huang TL, Cheung HK, Wang CC, Lin CL, Huang CB, Huang CC, Chen CL. Soluble thrombomodulin antigen as a marker for endothelial damage during liver transplantation. Transplant Proc. 2000 Nov;32(7):2273-5. PubMed, CrossRef
  24. Nedzvetsky VS, Tuzcu M, Yasar A, Tikhomirov AA, Baydas G. Effects of vitamin E against aluminum neurotoxicity in rats. Biochemistry (Mosc). 2006 Mar;71(3):239-44. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.