Ukr.Biochem.J. 2014; Volume 86, Issue 6, Nov-Dec, pp. 129-138


Kinetic properties of adenosine triphosphate sulfurylase of intestinal sulfate-reducing bacteria

I. V. Kushkevych1,2, H. L. Antonyak3, M. Bartoš2

1Institute of Animal Biology, NAAS of Ukraine, Lviv;
2University of Veterinary and Pharmaceutical Sciences of Brno, Czech Republic;
3Ivan Franko National University of Lviv, Ukraine;

The investigation of specific activity of ATP sulfurylase and kinetic properties of the enzyme in cell-free extracts of intestinal bacterial strains Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9 is presented. The microbiological, biochemical, biophysical and statistical methods were used in the work. The optimal temperature (35 ºC) and pH 8.0-8.5 for enzyme reaction were determined. An analysis of kinetic pro­perties of ATP sulfurylase has been carried out. Initial (instantaneous) reaction velocity (V0), maximum amount of the product of reaction (Pmax), the reaction time (half saturation period, τ) and maximum veloci­ty of the ATP sulfurylase reaction (Vmax) have been defined. Michaelis constants (KmSulfate, KmATP, KmAPS, and KmPyrophosphate­) of the enzyme reaction were demonstrated for both D. piger Vib-7 and Desulfomicrobium sp. Rod-9 intestinal bacterial strains.

Keywords: , , , , , , ,


  1. Bailey N. T. J. Statistical Methods in Biology. Cambridge University Press, 1995. 252 p. CrossRef
  2. Barton L. L., Hamilton W. A. Sulphate-reducing Bacteria. Environmental and Engineered. Cambridge University Press, 2007. 553 p. CrossRef
  3. Cummings JH, Macfarlane GT, Macfarlane S. Intestinal bacteria and ulcerative colitis. Curr Issues Intest Microbiol. 2003 Mar;4(1):9-20. Review. PubMed
  4. Dahl C., Truper H. G. Enzymes of dissimilatory sulfide oxidation in phototrophic bacteria. Methods Enzymol. 1994;243:400-421. CrossRef
  5. Danylovych GV, Gruzina TG, Ulberg ZR, Kosterin SO. Effect of ionic and colloid gold on ATP-hydrolase fermentative systems of Bacillus sp. В4253 and Bacillus sp. В4851. Ukr Biokhim Zhurn. 2007 Jul-Aug;79(4)46-53. (In Ukrainian). PubMed
  6. Gavel OY, Bursakov SA, Calvete JJ, George GN, Moura JJ, Moura I. ATP sulfurylases from sulfate-reducing bacteria of the genus Desulfovibrio. A novel metalloprotein containing cobalt and zinc. Biochemistry. 1998 Nov 17;37(46):16225-32. PubMed
  7. Gibson GR, Cummings JH, Macfarlane GT. Growth and activities of sulphate-reducing bacteria in gut contents of health subjects and patients with ulcerative colitis. FEMS Microbiol Ecol. 1991 Dec;9(2):103-11. CrossRef
  8. Keleti T. Basic Enzyme Kinetics. Akademiai Kiado, 1988. 422 p.
  9. Kosterin SA, Burchinskaia NF. A method for determining the kinetic characteristics of Ca2+-transporting systems of subcellular structures in smooth muscle. Ukr Biokhim Zhurn. 1987 Mar-Apr;59(2):66-9. Russian. PubMed
  10. Kramer M, Cypionka H. Sulfate formation via ATP sulfurylase in thiosulfate- and sulfite-disproportionating bacteria. Arch Microbiol. 1989 Feb;151(3):232-7. CrossRef
  11. Kushkevych IV. Sulfate-reducing bacteria of the human intestine. I. Dissimilatory sulfate reduction. Studia Biologica. 2012;6(1):149-180. (In Ukrainian).
  12. Kushkevych IV. Sulfate-reducing bacteria of the human intestine. II. The role in the diseases development. Studia Biologica. 2012;6(2):221-250. (In Ukrainian).
  13. Kushkevych IV. Identification of sulfate-reducing bacteria strains of human large intestine. Studia Biologica. 2013;7(3):115-124.
  14. Kushkevych IV, Bartos M, Bartosova L. Sequence analysis of the 16S rRNA gene of sulfate-reducing bacteria isolated from human intestine. Int J Curr Microbiol Appl Sci. 2014;3(2):239-248.
  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265-75. PubMed
  16. Peck HD Jr, LeGall J. Biochemistry of dissimilatory sulphate reduction. Philos Trans R Soc Lond B Biol Sci. 1982 Sep 13;298(1093):443-66. PubMed, CrossRef
  17. Phartiyal P, Kim WS, Cahoon RE, Jez JM, Krishnan HB. Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment. Arch Biochem Biophys. 2006 Jun 1;450(1):20-9. PubMed ,CrossRef
  18. Ravilious GE, Herrmann J, Goo Lee S, Westfall CS, Jez JM. Kinetic mechanism of the dimeric ATP sulfurylase from plants. Biosci Rep. 2013 Jul 25;33(4). pii: e00053. PubMed, PubMedCentral, CrossRef
  19. Segal IH. Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. John Wiley & Sons, New York. 1975.
  20. Sperling D, Kappler U, Wynen A, Dahl C, Trüper HG. Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiol Lett. 1998 May 15;162(2):257-64. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.