Ukr.Biochem.J. 2013; Volume 85, Issue 4, Jul-Aug, pp. 30-39

doi: http://dx.doi.org/10.15407/ubj85.04.030

Ca(2+) accumulation study in isolated smooth muscle mitochondria using Fluo-4 AM

O. V. Kolomiets, Yu. V. Danylovych, G. V. Danylovych, S. O. Kosterin

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: danylovych@biochem.kiev.ua

The opportunity of Ca2+-sensitive fluorescent dye Fluo-4 AM and spectrofluorimetry method application for the study of energy-dependent Ca2+ accumulation in mitochondria from uterus smooth muscle is proved. It has been found that the presen­ce of mitochondrial preparation increases time-dependent fluorescent response considerably and this effect depends on Ca2+ concentration in the medium. Thus, in these conditions, deesterification active probe is formed which is sensitive to Ca2+. It is shown that the accumulation of calcium ions in mitochondria in the presence of Mg-ATP and succinate depends on exogenous Ca2+ concentration and is characterized by substrate saturating­. The apparent activation constant of Ca2+ accumulation is 53.9 ± 6.9 mM, which corresponds to the physiological concentration of the cation in the cell next to mitochondria. Transit addition of Ca2+-ionophore A23187 to the incubation medium caused a rapid release of ionized cation from mitochondria. When proton gradient on the inner mitochondrial membrane is dissipated by protonophore CCCP, in the case of suppressing the generation of the gradient by oligomycin and in the presence of ruthenium red that inhibits Ca2+ mitochondrial accumulation systems, Ca2+ entry is significantly reduced. The results indicate the prospects of using Fluo-4 AM to study the properties of the Ca2+ accumulation system in isolated mitochondria of the myometrium.

Keywords: , , , ,


References:

  1. Kostyuk PG, Kostyuk OP, Lukyanets EA. Intracellular calcium signalling: structures and functions. Kyiv: Naukova dumka, 2010.  175 p.
  2. Kosterin SA, Burdyga FV. Ca2+ transport and intracellular homeostasis in myometrium. Uspekhi Sovrem. Biologii. 1993;113(4):485-506.
  3. Shinlova OP, Kosterin SA, Veklich TA. Ruthenium red inhibits energy-dependent and passive Ca2+ transport in permeabilized smooth muscle cells. Biokhimiia. 1996 Aug;61(8):1440-7. Russian. PubMed
  4. Kosterin SA. The possible H+-dependent functional connection between cell membrane and mitochondria in smooth muscle cells. Ukr Biokhim Zhurn. 1998 Nov-Dec;70(6):152-60. Russian. PubMed
  5. Babich LH, Shlykov SH, Naumova NV, Kosterin SO. Investigation of Ca2+ -induced changes of membrane potential of smooth muscle mitochondria using flow cytometric analysis. Ukr Biokhim Zhurn. 2007 Nov-Dec;79(6):34-41. Ukrainian. PubMed
  6. Babich LH, Shlykov SH, Naumova NV, Kosterin SO. Use of flow cytometry to determine Ca2+ content in mitochondria and influence of calmodulin antagonists on it. Ukr Biokhim Zhurn. 2008 Jul-Aug;80(4):51-8. Ukrainian. PubMed
  7. Wei AC, Liu T, Cortassa S, Winslow RL, O’Rourke B. Mitochondrial Ca2+ influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine A. Biochim Biophys Acta. 2011 Jul;1813(7):1373-81. Epub 2011 Feb 26. PubMed, PubMedCentral, CrossRef
  8. Burlaka AP, Sidorik EP. The reactive oxygen/nitrogen species in the process of tumor growth. K.: Nauk. Dumka, 2006. 227p.
  9. Avdonin PV, Tkachuk VA. Receptors and intracellular calcium. M.: Nauka, 1994. 288p.
  10. Gerasimenko O, Tepikin A. How to measure Ca2+ in cellular organelles? Cell Calcium. 2005 Sep-Oct;38(3-4):201-11. Review. PubMed, CrossRef
  11. Kosterin SA. Calcium transport in smooth muscle. Kiev: Naukova dumka, 1990. 216p.
  12. Kurskiy MD, Kosterin SA, Burchinskaia NF, Shlykov SG. Passive transport of Ca2+ in a myometrium mitochondria fraction. Ukr Biokhim Zhurn. 1987 May-Jun;59(3):35-9. Russian. PubMed
  13. Vovkanych LS, Dubytsky LO. Kinetical properties of the H+-stimulated rat liver mitochondria Ca2+ efflux. Exp Clin Physiol Biochem. 2001;15(3):34-37 [Ukrainian].
  14. Fluo calcium indicators. Molecular probes. Invitrogen detection technologies. Product information.  Revised: 02-Feb-2011.
  15. Berezhnov AV, Zinchenko VP, Fedotova EI, Yashin VA. Application of fluorescence microscopy in studies Ca2+ dynamics in cells.  Pushchino, Pushchino Scientific Center, RAS, Research and training Center of Insitute of Cell Biophysics RAS, 2007. 65p.
  16. Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium. 2000 Feb;27(2):97-106. PubMedCrossRef
  17. Scaduto RC Jr, Grotyohann LW. Hydrolysis of Ca2+-sensitive fluorescent probes by perfused rat heart. Am J Physiol Heart Circ Physiol. 2003 Nov;285(5):H2118-24. PubMed, CrossRef
  18. Wan B, LaNoue KF, Cheung JY, Scaduto RC Jr. Regulation of citric acid cycle by calcium. J Biol Chem. 1989 Aug 15;264(23):13430-9. PubMed
  19. Malli R, Graier WF. Mitochondrial Ca2+ channels: Great unknowns with important functions. FEBS Lett. 2010 May 17;584(10):1942-7. Review. PubMed, PubMedCentral, CrossRef
  20. Santo-Domingo J, Demaurex N. Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):907-12. Review. PubMed, CrossRef
  21. Kandaurova NV. Ca2+-induced changes in mitochondrial membrane potential of rat myometrium : avtoref. dys. … kand. biol. nauk.  2011. 20p.
  22. Kosterin SA, Bratkova NF, Kursky MD. The role of sarcolemma and mitochondria in calcium-dependent control of myometrium relaxation. Biokhimiia. 1985 Aug;50(8):1350-61. Russian. PubMed
  23. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72(1-2):248-54. PubMedCrossRef
  24. Kandaurova NV, Chunikhin OIu, Babich LG, Shlykov SG, Kosterin SO. Modulators of transmembrane calcium exchange in myometrium mitochondria change their hydrodynamic diameter. Ukr Biokhim Zhurn. 2010 Nov-Dec;82(6):52-7. Ukrainian. PubMed
  25. Ponomarenko OV, Babich LH, Horchev VF, Kosterin SO. Studies of Ca2+-dependent smooth muscle mitochondria swelling using flow cytometry and spermine effects on this process. Ukr Biokhim Zhurn. 2006 Nov-Dec;78(6):38-45. Ukrainian. PubMed
  26. Kliueva AV, Levchuk IuN, Naboka IuN. Photon-correlation spectroscopy of proteins. Ukr Biokhim Zhurn. 2002 Sep-Oct;74(5):12-26. Russian. PubMed
  27. Kucherenko MIe, Babeniuk IuD, Voitsitskyi VM. Uchbovyi posibnyk. Modern methods in biochemical research: Textbook. Kyiv: Fitosotsiotsentr, 2001. 424p.
  28. Gennis RB. Biomembranes: Molecular Structure and Function.  M.: Mir, 1997. 624p.
  29. Bisogno T, Sepe N, Melck D, Maurelli S, De Petrocellis L, Di Marzo V. Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells. Biochem J. 1997 Mar 1;322(Pt 2):671-7. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.