Ukr.Biochem.J. 2013; Volume 85, Issue 5, Sep-Oct, pp. 61-72


Carbohydrate restriction in the larval diet causes oxidative stress in adult insects of Drosophila melanogaster

B. M. Rovenko, V. I. Lushchak, O. V. Lushchak

Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine;
е-mail address:

The influence of 20 and 1% glucose and fructose, which were components of larval diet, on the  level of oxidized proteins and lipids, low molecular mass antioxidant content as well as activities of antioxidant and associated enzymes in adult fruit fly Drosophila melanogaster were investigated. The restriction of carbohydrates in larval diet leads to oxidative stress in adult insects. It is supported by 40–50% increased content of protein carbonyl groups and by 60–70% decreased level of protein thiol groups as well as by a 4-fold increase of lipid peroxide content in 2-day-old flies of both sexes, developed on the diet with 1% carbohydrates. Oxidative stress, induced by carbohydrate restriction of the larval diet, caused the activation of antioxidant defence, differently exhibited in male and female fruit flies. Caloric restriction increased activity of superoxide dismutase and thioredoxin reductase associating only in males with 2-fold higher activity of NADPH-producing enzymes – glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase. Carbohydrate restriction in the larval diet caused the increase of uric acid content, but the decrease in catalase activity in males. In females the values of these parameters were changed in opposite direction compared with males. The obtained results let us conclude the different involvement of low molecular mass antioxidants, glutathione and uric acid, and antioxidant enzyme catalase in the protection of male and female fruit fly macromolecules against oxidative damages, caused by calorie restriction of larval diet.

Keywords: , , , , ,


  1. Tappy L, Lê KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010 Jan;90(1):23-46. Review. PubMed, CrossRef
  2. Keller A. Drosophila melanogaster’s history as a human commensal. Curr Biol. 2007 Feb 6;17(3):R77-81. PubMed, CrossRef
  3. Basciano H, Federico L, Adeli K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond). 2005 Feb 21;2(1):5. PubMed, PubMedCentral, CrossRef
  4. Hua S, An HJ. Glycoscience aids in biomarker discovery. BMB Rep. 2012 Jun;45(6):323-30. Review. PubMed, CrossRef
  5. Havula E, Hietakangas V. Glucose sensing by ChREBP/MondoA-Mlx transcription factors. Semin Cell Dev Biol. 2012 Aug;23(6):640-7. Review. PubMed, CrossRef
  6. Coutinho MF, Prata MJ, Alves S. Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Mol Genet Metab. 2012 Apr;105(4):542-50.  Review. PubMed, CrossRef
  7. Zhang XL. Roles of glycans and glycopeptides in immune system and immune-related diseases. Curr Med Chem. 2006;13(10):1141-7. PubMed, CrossRef
  8. Johnson RJ, Perez-Pozo SE, Sautin YY, Manitius J, Sanchez-Lozada LG, Feig DI, Shafiu M, Segal M, Glassock RJ, Shimada M, Roncal C, Nakagawa T. Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev. 2009 Feb;30(1):96-116. Review. PubMed, PubMedCentral, CrossRef
  9. Schalkwijk CG, Stehouwer CD, van Hinsbergh VW. Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification. Diabetes Metab Res Rev. 2004 Sep-Oct;20(5):369-82. Review. PubMed, CrossRef
  10. Speakman JR, Mitchell SE. Caloric restriction. Mol Aspects Med. 2011 Jun;32(3):159-221. Review. PubMed, CrossRef
  11. Rattan SI. Aging, anti-aging, and hormesis. Mech Ageing Dev. 2004 Apr;125(4):285-9. Review. PubMed, CrossRef
  12.  Birringer M. Hormetics: dietary triggers of an adaptive stress response. Pharm Res. 2011 Nov;28(11):2680-94.  Review. PubMed, CrossRef
  13. Stephen A, Alles M, de Graaf C, Fleith M, Hadjilucas E, Isaacs E, Maffeis C, Zeinstra G, Matthys C, Gil A. The role and requirements of digestible dietary carbohydrates in infants and toddlers. Eur J Clin Nutr. 2012 Jul;66(7):765-79. Review. PubMed, PubMedCentral, CrossRef
  14. Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am J Clin Nutr. 2000 May;71(5 Suppl):1344S-52S. Review. PubMed
  15. Milton VJ, Sweeney ST. Oxidative stress in synapse development and function. Dev Neurobiol. 2012 Jan;72(1):100-10. Review. PubMed, CrossRef
  16. Skorupa DA, Dervisefendic A, Zwiener J, Pletcher SD. Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell. 2008 Aug;7(4):478-90.  PubMed, PubMedCentral, CrossRef
  17. Lushchak OV, Rovenko BM, Gospodaryov DV, Lushchak VI. Drosophila melanogaster larvae fed by glucose and fructose demonstrate difference in oxidative stress markers and antioxidant enzymes of adult flies. Comp Biochem Physiol A Mol Integr Physiol. 2011 Sep;160(1):27-34. PubMed, CrossRef
  18. Rovenko BM, Lushchak OV, Lozins’kyĭ OV, Kubrak OI, Lushchak VI. Mild oxidative stress in fruit fly Drosophila melanogaster caused by products of sucrose hydrolysis. Ukr Biokhim Zhurn. 2012 Sep-Oct;84(5):97-105. Ukrainian. PubMed
  19. Lenz AG, Costabel U, Shaltiel S, Levine RL. Determination of carbonyl groups in oxidatively modified proteins by reduction with tritiated sodium borohydride. Anal Biochem. 1989 Mar;177(2):419-25. PubMed
  20. Hermes-Lima M, Willmore WG, Storey KB. Quantification of lipid peroxidation in tissue extracts based on Fe(III)xylenol orange complex formation. Free Radic Biol Med. 1995 Sep;19(3):271-80. PubMed
  21. Wawrik B, Harriman BH. Rapid, colorimetric quantification of lipid from algal cultures. J Microbiol Methods. 2010 Mar;80(3):262-6. PubMed, CrossRef
  22. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70-7. PubMed, CrossRef
  23. Brooks SP. A simple computer program with statistical tests for the analysis of enzyme kinetics. Biotechniques. 1992 Dec;13(6):906-11. PubMed
  24. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6. PubMed, CrossRef
  25. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72(1-2):248-54. PubMed, CrossRef
  26.  Lushchak VI. Free radical oxidation of proteins and its relationship with functional state of organisms. Biochemistry (Mosc). 2007 Aug;72(8):809-27. Review. PubMed, CrossRef
  27. Lushchak VI, Semchyshyn HM, Lushchak OV. The classic methods to measure oxidative damage: lipid peroxides, thiobarbituric-acid reactive substances, and protein carbonyls. In:  Oxidative Stress in Aquatic Ecosystems, Blackwell Publishing Ltd, 2011. P. 420-431.  CrossRef
  28. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009 Jan 1;417(1):1-13. PubMed, PubMedCentral, CrossRef
  29. Sohal RS. Role of oxidative stress and protein oxidation in the aging process. Free Radic Biol Med. 2002 Jul 1;33(1):37-44. Review. PubMed
  30. Youngman LD,  Park JY, Ames BN. Protein oxidation associated with aging is reduced by dietary restriction of protein or calories. Proc Natl Acad Sci USA. 1992 Oct 1; 89(19): 9112-9116.  PubMed, PubMedCentral, CrossRef
  31. Efendiev AM, Kerimov BF. The effect of starvation of lipid peroxidation in synaptosomal and mitochondrial factions of various brain structures. Vopr Med Khim. 1994 Mar-Apr;40(2):34-7. Russian. PubMed
  32. Hashmi RS, Siddiqui AM, Kachole MS, Pawar SS. Alterations in hepatic microsomal mixed-function oxidase system during different levels of food restriction in adult male and female rats. J Nutr. 1986 Apr;116(4):682-8. PubMed
  33. Sohal RS, Orr WC. Relationship between antioxidants, prooxidants, and the aging process. Ann N Y Acad Sci. 1992 Nov 21;663(1):74-84. Review. PubMed, CrossRef
  34. Hilliker AJ, Duyf B, Evans D, Phillips JP. Urate-null rosy mutants of Drosophila melanogaster are hypersensitive to oxygen stress. Proc Natl Acad Sci USA. 1992 May 15;89(10):4343-7. PubMed, PubMedCentral, CrossRef
  35. Jouini M, Lapluye G, Huet J, Julien R, Ferradini C. Catalytic activity of a copper(II)-oxidized glutathione complex on aqueous superoxide ion dismutation. J Inorg Biochem. 1986 Apr;26(4):269-80. PubMed, CrossRef
  36. Ballard JW, Katewa SD, Melvin RG, Chan G. Comparative analysis of mitochondrial genotype and aging. Ann N Y Acad Sci. 2007 Oct;1114(1):93-106. Review. PubMed, CrossRef
  37. Groeger G, Quiney C, Cotter TG. Hydrogen peroxide as a cell-survival signaling molecule. Antioxid Redox Signal. 2009 Nov;11(11):2655-71. Review. PubMed, CrossRef
  38. Nicholls P. Classical catalase: ancient and modern. Arch Biochem Biophys. 2012 Sep 15;525(2):95-101. Review. PubMed, CrossRef
  39. Cabreiro F, Ackerman D, Doonan R, Araiz C, Back P, Papp D, Braeckman BP, Gems D. Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radic Biol Med. 2011 Oct 15;51(8):1575-82. PubMed, PubMedCentral, CrossRef
  40. Hargreaves AB, Lobo LC, Calmon Lemme C, Hasson A. In vitro and in vivo inhibition of catalase by uric acid and other nucleic acid catabolites. Cancer Res. 1959 Jun;19(5):468-71. PubMed
  41. Nissani M, Liu CP. Experiments with the maroon-like mutation of Drosophila melanogaster.  Genet Res. 1977 Apr;29(2):159-70. PubMed,   CrossRef
  42. Tahoe NM, Dean AM, Curtsinger JW. Nucleotide variations in the lxd region of Drosophila melanogaster: characterization of a candidate modifier of lifespan. Gene. 2002 Sep 4;297(1-2):221-8. PubMed, CrossRef
  43.  Missirlis F, Rahlfs S, Dimopoulos N, Bauer H, Becker K, Hilliker A, Phillips JP, Jäckle H. A putative glutathione peroxidase of Drosophila encodes a thioredoxin peroxidase that provides resistance against oxidative stress but fails to complement a lack of catalase activity. Biol Chem. 2003 Mar;384(3):463-72. PubMed, CrossRef
  44. Barroso JB, Peragón J, García-Salguero L, de la Higuera M, Lupiáñez JA. Carbohydrate deprivation reduces NADPH-production in fish liver but not in adipose tissue. Int J Biochem Cell Biol. 2001 Aug;33(8):785-96. PubMed, CrossRef
  45. Williamson JH, Bentley MM. Dosage compensation in Drosophila: NADP-enzyme activities and cross-reacting material. Genetics. 1983 Apr;103(4):649-58. PubMed, PubMedCentral
  46. Semchyshyn HM, Lozinska LM. Fructose protects baker’s yeast against peroxide stress: potential role of catalase and superoxide dismutase. FEMS Yeast Res. 2012 Nov;12(7):761-73. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.