Ukr.Biochem.J. 2013; Volume 85, Issue 5, Sep-Oct, pp. 177-190

doi: http://dx.doi.org/10.15407/ubj85.05.177

Mathematical modeling of calcium homeostasis in smooth muscle cells while activity of plasma membrane calcium pump is modulated

S. O. Karakhim, V. F. Gorchev, P. F. Zhuk, S. O. Kosterin

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: laserlab@biochem.kiev.ua;  kinet@biochem.kiev.ua

A mathematical model of intracellular calcium homeostasis in smooth muscle cells has been investigated by computer modelling method. The results of calculations showed that for the plasma membrane calcium pump (PMCA) the limiting rate (VmPM) increasing or the Michaelis constant (KmPM) decreasing result in a lowering of the Ca2+ concentration in cytosol and sarcoplasmic reticulum (SR); the slight VmPM decreasing or KmPM increasing result in fluent cytosolic Ca2+ strengthening due to slow basal influx (SBI) since a massive release of Ca2+ from SR does not occur. The further VmPM decreasing or KmPM increasing stimulate the Ca2+-induced Ca2+ release from SR and the system passes into oscillation mode; when the certain low VmPM or high KmPM level is reached the oscillations of Ca2+ concentration in cytosol are stopped, there is only first oscillation after which a new level of cytosolic Ca2+ concentration is formed fluently: this level is higher than in the initial basal condition (IBC). Sensitivity of myocytes with the lowering­ of VmPM or increasing KmPM to agonist action is rising but sensitivity of myocytes with increasing VmPM or decreasing KmPM to agonist action is reducing. If the PMCA parameters (VmPM or KmPM) are changed then passive influx of Ca2+ in cytosol from extracellular space remains virtually invariable and it is equal to SBI value during the whole process. Initial rate of PMCA in a new equilibrium condition (NEC) is equal virtually to initial rate in IBC: it allows to calculate a new value VmPM or KmPM  from cytosolic Ca2+ concentration in NEC.

Keywords: , , , , , , ,


References:

  1. Kosterin SO. Calcium transport in smooth muscles. Kiev: Naukova dumka, 1990. 216 p.
  2. Horowitz A, Menice CB, Laporte R, Morgan KG. Mechanisms of smooth muscle contraction. Physiol Rev. 1996 Oct;76(4):967-1003. Review. PubMed
  3. Floyd R, Wray S. Calcium transporters and signalling in smooth muscles. Cell Calcium. 2007 Oct-Nov;42(4-5):467-76. Review. PubMed, CrossRef
  4. Shannon TR, Wang F, Puglisi J, Weber C, Bers DM. A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys J. 2004 Nov;87(5):3351-71. PubMed, PubMedCentral, CrossRef
  5. Labyntseva RD, Slinchenko NM, Veklich TO, Rodik RV, Cherenok SO, Boĭko VI, Kalchenko VI, Kosterin SO. Comparative study of calixarene effect on Mg2+ -dependent ATP-hydrolase enzymatic systems from smooth muscle cells of the uterus. Ukr Biokhim Zhurn. 2007 May-Jun;79(3):44-54.  Ukrainian. PubMed
  6. Shlykov SH, Babich LH, Slichenko NM, Rodik RV, Boyko VI, Kalchenko VI, Kosterin SO. Calixarene C-91 stimulates Ca2+ accumulation in the myometrium mitochondria. Ukr Biokhim Zhurn. 2007 Jul-Aug;79(4):28-33. Ukrainian. PubMed
  7. Veklich TO, Shkrabak OA, Rodik RV, Kalchenko VI, Kosterin SO. Effect of calixarene C-107 on kinetic parameters of Na+, K(+)-ATPase in the plasma membrane of the uterus myocytes. Ukr Biokhim Zhurn. 2011 Mar-Apr;83(2):36-44. Ukrainian. PubMed
  8. Laporte R, Hui A, Laher I. Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle. Pharmacol Rev. 2004 Dec;56(4):439-513. Review.
    PubMed, CrossRef
  9.  Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol. 1990 Jul;259(1 Pt 1):C3-18. Review. PubMed
  10. Burdyga T, Wray S, Noble K. In situ calcium signaling: no calcium sparks detected in rat myometrium. Ann N Y Acad Sci. 2007 Apr;1101(1):85-96. Review. PubMed, CrossRef
  11. Sobie EA, Dilly KW, dos Santos Cruz J, Lederer WJ, Jafri MS. Termination of cardiac Ca(2+) sparks: an investigative mathematical model of calcium-induced calcium release. Biophys J. 2002 Jul;83(1):59-78. PubMed, PubMedCentral, CrossRef
  12. Kosterin SO, Miroshnychenko MS, Pryluts’kyĭ IuI, Davydovs’ka TL, Tsymbaliuk OV. Mathematical model of trans-sarcomere exchange of calcium ions and Ca2+-dependent control of smooth muscle contractile activity. Ukr Biokhim Zhurn. 2002 Mar-Apr;74(2):128-33. Ukrainian. PubMed
  13. Parekh AB, Putney JW Jr. Store-operated calcium channels. Physiol Rev. 2005 Apr;85(2):757-810. Review. PubMed
  14. Bursztyn L, Eytan O, Jaffa AJ, Elad D. Modeling myometrial smooth muscle contraction. Ann N Y Acad Sci. 2007 Apr;1101(1):110-38. Review. PubMed, CrossRef
  15. Wiesner TF, Berk BC, Nerem RM. A mathematical model of cytosolic calcium dynamics in human umbilical vein endothelial cells. Am J Physiol. 1996 May;270(5 Pt 1):C1556-69. PubMed
  16. Zucchi R, Ronca F, Ronca-Testoni S. Modulation of sarcoplasmic reticulum function: a new strategy in cardioprotection? Pharmacol Ther. 2001 Jan;89(1):47-65. Review.
    PubMed, CrossRef
  17. Ji G, Feldman M, Doran R, Zipfel W, Kotlikoff MI. Ca2+ -induced Ca2+ release through localized Ca2+ uncaging in smooth muscle. J Gen Physiol. 2006 Mar;127(3):225-35.
    PubMed, PubMedCentral, CrossRef
  18. Fill M, Copello JA. Ryanodine receptor calcium release channels. Physiol Rev. 2002 Oct;82(4):893-922. Review. PubMed, CrossRef
  19. Tugay VA, Danilovich IuV.Mechanisms of Ca2+ transport to the cytoplasm of muscle cells, role of protons and active nitrogen (oxygen) metabolites in these processes. Ukr Biokhim Zhurn. 2006 Mar-Apr;78(2):37-51. Russian. PubMed
  20. Yao J, Li Q, Chen J, Muallem S. Subpopulation of store-operated Ca2+ channels regulate Ca2+-induced Ca2+ release in non-excitable cells. J Biol Chem. 2004 May 14;279(20):21511-9. PubMed, CrossRef
  21. Zinchenko V. P., Dolgacheva L.P.  Intracellular signaling. Pushchino:  Pushchino:  Jelektronnoe izdatel’stvo “Analiticheskaja mikroskopija”, 2003. http://www.chronos.msu.ru/RREPORTS/Vnutrikletochnaja_Signalizacija.pdf.
  22. The study of Ca2+-induced Ca2+ release from the sarcoplasmic reticulum in smooth muscle cells by mathematical modeling / Zhuk P.F., Karakhim S.O., Gorchev V.F., Kosterin S.O., Inst. of inform. and diagn.systems of Nat. Aviation Un., Kiev, 2010;55p.; Dep. in NTBU 2010, No.28.
  23. Bird GS, DeHaven WI, Smyth JT, Putney JW Jr. Methods for studying store-operated calcium entry. Methods. 2008 Nov;46(3):204-12. Review.
    PubMed, PubMedCentral, CrossRef
  24. Venetucci LA, Trafford AW, O’Neill SC, Eisner DA. The sarcoplasmic reticulum and arrhythmogenic calcium release. Cardiovasc Res. 2008 Jan 15;77(2):285-92. PubMed, CrossRef
  25. Borle AB, Borle CJ, Dobransky P, Gorecka-Tisera AM, Bender C, Swain K. Effects of low extracellular Ca2+ on cytosolic free Ca2+, Na+, and pH of MDCK cells. Am J Physiol. 1990 Jul;259(1 Pt 1):C19-25. PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.