Ukr.Biochem.J. 2015; Volume 87, Issue 5, Sep-Oct, pp. 103-112


Plasminogen and angiostatin levels in female benign breast lesions

A. A. Tykhomyrov1, I. L. Vovchuk2, T. V. Grinenko1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2Odessa I. I. Mechnikov National University, Ukraine;

It is known that benign breast tissue exhibit relatively low angiogenic capacity. Activation of angiogenesis in mammary pre-malignant lesions could be associated with disease progression and high risk of transformation into the breast cancer. However, insight into the underlying molecular mechanisms involved in angiogenesis regulation in non-cancerous breast pathologies is still poorly defined. The purpose of the present study was to determine levels of plasminogen and its proteolytic fragments (angiostatins) in mammary dysplasia (mastopathy and breast cyst) and benign neoplasms (fibroadenomas). Plasminogen and angiostatins were analyzed using immunoblotting and quantified by densitometric scanning. The significant increase in plasminogen levels was found in fibrocystic, cysts, and non-proliferatious fibroadenoma masses (4.7-, 3.7-, and 3.5-fold, respectively) compared to healthy breast tissues (control). In the same benign lesions, 6.7-, 4-, and 3.7-fold increase in plasminogen 50 kDa fragment (angiostatin) levels as compared with control were also observed. Activation of matrix metalloproteinase-9, which was detected using gelatine zymography, could be responsible for plasminogen cleavage and abundance of angiostatin in fibrocystic and cyst masses. In contrast, dramatic decrease of both plasminogen and angiostatin levels (3.8- and 5.3-folds, respectively) was shown in tissues of proliferatious form of fibroadenoma in comparison with that of the dormant type of this neoplasm. Based on the obtained results, we concluded that angiostatin, a potent vessel growth inhibitor and anti-inflammatory molecule, can play a crucial role in pathophysiology of non-cancerous breast diseases. Further studies are needed to evaluate potential diagnostic and clinical implications of these proteins for prediction and therapy of benign breast pathologies.

Keywords: , , , , , , ,


  1. Mannello F, Tonti GA. Benign breast diseases: classification, diagnosis, and management. Oncologist. 2006 Nov-Dec;11(10):1132-4. PubMedCrossRef
  2.  Norwood SL. Fibrocystic breast disease. An update and review. J Obstet Gynecol Neonatal Nurs. 1990 Mar-Apr;19(2):116-21. Review. PubMed, CrossRef
  3. Houssami N, Irwig L, Ung O. Review of complex breast cysts: implications for cancer detection and clinical practice. ANZ J Surg. 2005 Dec;75(12):1080-5. Review. PubMed, CrossRef
  4. El-Wakeel H, Umpleby HC. Systematic review of fibroadenoma as a risk factor for breast cancer. Breast. 2003 Oct;12(5):302-7. Review. PubMed, CrossRef
  5.  Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008 May 8;358(19):2039-49. Review. PubMed, PubMedCentral, CrossRef
  6. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971 Nov 18;285(21):1182-6. Review. PubMed, CrossRef
  7.  Bos R, van Diest PJ, de Jong JS, van der Groep P, van der Valk P, van der Wall E. Hypoxia-inducible factor-1alpha is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer. Histopathology. 2005 Jan;46(1):31-6. PubMed, CrossRef
  8.  Bluff JE, Menakuru SR, Cross SS, Higham SE, Balasubramanian SP, Brown NJ, Reed MW, Staton CA. Angiogenesis is associated with the onset of hyperplasia in human ductal breast disease. Br J Cancer. 2009 Aug 18;101(4):666-72. PubMed, PubMedCentral, CrossRef
  9. Azzopardi JG. Benign and malignant proliferative epithelial lesions of the breast; a review. Eur J Cancer Clin Oncol. 1983 Dec;19(12):1717-20. PubMed, CrossRef
  10.  Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res. 2005 May 15;65(10):3967-79. Review. PubMed, CrossRef
  11.  O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Cao Y, Moses M, Lane WS, Sage EH, Folkman J. Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol. 1994;59:471-482. PubMed, CrossRef
  12.  Wahl ML, Kenan DJ, Gonzalez-Gronow M, Pizzo SV. Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated. J Cell Biochem. 2005 Oct 1;96(2):242-61. Review. PubMed, CrossRef
  13.  Cho CF, Chen PK, Chang PC, Wu HL, Shi GY. Human plasminogen kringle 1-5 inhibits angiogenesis and induces thrombomodulin degradation in a protein kinase A-dependent manner. J Mol Cell Cardiol. 2013 Oct;63:79-88. PubMed, CrossRef
  14. Szarvas T, Jäger T, Laszlo V, Kramer G, Klingler HC, vom Dorp F, Romics I, Ergün S, Rübben H. Circulating angiostatin, bFGF, and Tie2/TEK levels and their prognostic impact in bladder cancer. Urology. 2012 Sep;80(3):737.e13-8. PubMed, CrossRef
  15. Tykhomyrov AA, Nedzvetsky VS, Bardachenko NI, Grinenko TV, Kuryata OV. Statin treatment decreases serum angiostatin levels in patients with ischemic heart disease. Life Sci. 2015 Aug 1;134:22-9. PubMed, CrossRef
  16. Rosen PP. Pathological examination of breast specimens. In: Rosen PP, ed. Breast Pathology. Philadelphia, PA: LippincottRaven; 1997:837-872.
  17. Stoscheck CM. Quantitation of protein. Methods Enzymol. 1990;182:50-68. PubMed, CrossRef
  18.  Tykhomyrov AA, Yusova EI, Diordieva SI, Corsa VV, Grinenko TV. Production and characteristics of antibodies against K1-3 fragment of human plasminogen. Biotechnologia Acta. 2013;6(1):86-96. CrossRef
  19. La Rocca G, Pucci-Minafra I, Marrazzo A, Taormina P, Minafra S. Zymographic detection and clinical correlations of MMP-2 and MMP-9 in breast cancer sera. Br J Cancer. 2004 Apr 5;90(7):1414-21. PubMed, PubMedCentral, CrossRef
  20. Hanemaaijer R, Verheijen JH, Maguire TM, Visser H, Toet K, McDermott E, O’Higgins N, Duffy MJ. Increased gelatinase-A and gelatinase-B activities in malignant vs. benign breast tumors. Int J Cancer. 2000 Apr 15;86(2):204-7. PubMed, CrossRef
  21.  Tonini T, Rossi F, Claudio PP. Molecular basis of angiogenesis and cancer. Oncogene. 2003 Sep 29;22(42):6549-56. Review. PubMed, CrossRef
  22.  Zhernosekov DD, Iusova EI, Grinenko TV. Role of plasminogen/plasmin in functional activity of blood cells. Ukr Biokhim Zhurn. 2012 Jul-Aug;84(4):5-19. Review. Russian. PubMed
  23. Doll JA, Soff GA. Angiostatin. Cancer Treat Res. 2005;126:175-204. Review. PubMed, CrossRef
  24. Gately S, Twardowski P, Stack MS, Cundiff DL, Grella D, Castellino FJ, Enghild J, Kwaan HC, Lee F, Kramer RA, Volpert O, Bouck N, Soff GA. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci USA. 1997 Sep 30;94(20):10868-72. PubMed, PubMedCentral, CrossRef
  25.  Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z. Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol. 2003 Mar;10(2):136-41. Review. PubMed, CrossRef
  26. Xu R, Sun X, Tse LY, Li H, Chan PC, Xu S, Xiao W, Kung HF, Krissansen GW, Fan ST. Long-term expression of angiostatin suppresses metastatic liver cancer in mice. Hepatology. 2003 Jun;37(6):1451-60. PubMed, CrossRef
  27. Galaup A, Magnon C, Rouffiac V, Opolon P, Opolon D, Lassau N, Tursz T, Perricaudet M, Griscelli F. Full kringles of plasminogen (aa 1-566) mediate complete regression of human MDA-MB-231 breast tumor xenografted in nude mice. Gene Ther. 2005 May;12(10):831-42. PubMed, CrossRef
  28.  Mu W, Long DA, Ouyang X, Agarwal A, Cruz PE, Roncal CA, Nakagawa T, Yu X, Hauswirth WW, Johnson RJ. Angiostatin overexpression is associated with an improvement in chronic kidney injury by an anti-inflammatory mechanism. Am J Physiol Renal Physiol. 2009 Jan;296(1):F145-52. PubMed, PubMedCentral, CrossRef
  29. Perri SR, Annabi B, Galipeau J. Angiostatin inhibits monocyte/macrophage migration via disruption of actin cytoskeleton. FASEB J. 2007 Dec;21(14):3928-36. PubMedCrossRef
  30.  Stillfried GE, Saunders DN, Ranson M. Plasminogen binding and activation at the breast cancer cell surface: the integral role of urokinase activity. Breast Cancer Res. 2007;9(1):R14. PubMed, PubMedCentral
  31. Dudani AK, Ben-Tchavtchavadze M, Porter S, Tackaberry E. Angiostatin and plasminogen share binding to endothelial cell surface actin. Biochem Cell Biol. 2005 Feb;83(1):28-35. PubMedCrossRef
  32. Migita T, Oda Y, Naito S, Morikawa W, Kuwano M, Tsuneyoshi M. The accumulation of angiostatin-like fragments in human prostate carcinoma. Clin Cancer Res. 2001 Sep;7(9):2750-6. PubMed
  33. Jezierska A, Motyl T. Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Monit. 2009 Feb;15(2):RA32-40. Review. PubMed
  34. Shah FD, Shukla SN, Shah PM, Shukla HK, Patel PS. Clinical significance of matrix metalloproteinase 2 and 9 in breast cancer. Indian J Cancer. 2009 Jul-Sep;46(3):194-202. PubMed, CrossRef
  35. Ranuncolo SM, Armanasco E, Cresta C, Bal De Kier Joffe E, Puricelli L. Plasma MMP-9 (92 kDa-MMP) activity is useful in the follow-up and in the assessment of prognosis in breast cancer patients. Int J Cancer. 2003 Sep;106(5):745-51. PubMed, CrossRef
  36.  Xu Z, Shi H, Li Q, Mei Q, Bao J, Shen Y, Xu J. Mouse macrophage metalloelastase generates angiostatin from plasminogen and suppresses tumor angiogenesis in murine colon cancer. Oncol Rep. 2008 Jul;20(1):81-8. PubMed, CrossRef
  37. Chung AW, Yang HH, Sigrist MK, Brin G, Chum E, Gourlay WA, Levin A. Matrix metalloproteinase-2 and -9 exacerbate arterial stiffening and angiogenesis in diabetes and chronic kidney disease. Cardiovasc Res. 2009 Dec 1;84(3):494-504. PubMed, CrossRef
  38. Mnihovich MV, Ternov MM, Miglyas VG. Precancer and breast cancer: light and electron assessment of extracellular matrix, angiogenesis and the microenvironment cell. Pathologia. 2011;8(1):36-41.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.