Ukr.Biochem.J. 2013; Volume 85, Issue 2, Mar-Apr, pp. 5-19

doi: http://dx.doi.org/10.15407/ubj85.02.005

The сalix[4]arene C-107 is highly effective supramolecular inhibitor of the Na+,K+-АТРase of plasmatic membrane

O. V. Bevza1, T. O. Veklich1, O. A. Shkrabak1, R. V. Rodik2, V. I. Kalchenko2, S. O. Kosterin1

 1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: kinet@biochem.kiev.ua;
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: vik@bpci.kiev.ua

The inhibition of the Na+,K+-АТРase activity of the myometrium cell plasma membranes with calixarene С-107 (5,17-diamino(2-pyridyl)methylphosphono-11,23-di-tret-butyl-26,28-dihydroxy-25,27-dipropoxycalix[4]arene) was investigated. It has been shown that calixarene С-107 reduced the Na+,K+-АТРase activity more efficiently than ouabain did, while it did not practically influence the “basal” Mg2+-АТРase activity of the same membrane. The magnitude of the cofficient of inhibition I0.5 was 33 ± 4 nМ, Hill coefficient was 0.38 ± 0.06. The model calixa­rene C-150 – the calixarene “scaffold” (26,28-dihydroxy-25,27-dipropoxycalix[4]arene), and the model compound М-3 (4-hydroxyaniline(2-pyridine)methylphosphonic acid) – a fragment of the calixarene С-107, had practically no influence on the enzymatic activity of Na+,K+-АТРase and Mg2+-АТРаse.  We carried out the computer simulation of interaction of calixarenes C-107 and the mentioned model compound with ligand binding sites of the Na+,K+-АТРase of plasma membrane and structure foundation of their intermolecular interaction was found out. The participation of hydrogen, hydrophobic, electrostatic and π-π (stacking) interaction between calixarene and enzyme aminoacid residues, some of which are located near the active center of Na+,K+-АТРase, was discussed.

Keywords: , , , , , ,


References:

  1. Krivoi II, Drabkina TM, Dobretsov MG, Vasil’ev AN, Kravtsova VV, Eaton MJ, Skachkov SN, Mandel F. Functional interaction between nicotinic cholinergic receptors and Na, K-ATPase in the skeletal muscles. Ross Fiziol Zh Im I M Sechenova. 2004 Jan;90(1):59-72. Russian. PubMed
  2. Lopina OD. Interaction of Na,K-ATPase Catalytic Subunit with Cellular Proteins and Other Endogenous Regulators. Biochemistry (Mosc). 2001 Oct;66(10):1122-31. PubMed CrossRef
  3. Boldyrev AA. Na+,K+-ATPase: 40 years of investigations. Membr Cell Biol. 2000;13(6):715-9. PubMed
  4. Avkiran M, Snabaitis AK. Regulation of cardiac sarcolemmal Na+/H+ exchanger activity: potential pathophysiological significance of endogenous mediators and oxidant stress. J Thromb Thrombolysis. 1999 Jul;8(1):25-32. Review. PubMed
  5. Greger R. Physiology of renal sodium transport. Am J Med Sci. 2000 Jan;319(1):51-62. Review. PubMed, CrossRef
  6. Yakubtsova I. V., Protsenko T. L., Khilko T. D., Ostapchenko L. I. Study of Na+-K+-ATPase activity and the lipid composition of the cell plasma membrane of the rat gastric mucosa upon ulcerogenesis. Physics Alive. 2006;14(1):73-80.
  7. Xie Z, Askari A. Na(+)/K(+)-ATPase as a signal transducer. Eur J Biochem. 2002 May;269(10):2434-9. PubMed, CrossRef
  8. Aydemir-Koksoy A, Abramowitz J, Allen JC. Ouabain-induced signaling and vascular smooth muscle cell proliferation. J Biol Chem. 2001 Dec 7;276(49):46605-11. PubMed, CrossRef
  9. Krug LM, Berk BC. Na+, K(+)-adenosine triphosphatase regulation in hypertrophied vascular smooth muscle cells. Hypertension. 1992 Aug;20(2):144-50. PubMed, CrossRef
  10. Orlov SN, Pchejetski D, Taurin S, Thorin-Trescases N, Maximov GV, Pshezhetsky AV, Rubin AB, Hamet P. Apoptosis in serum-deprived vascular smooth muscle cells: evidence for cell volume-independent mechanism. Apoptosis. 2004 Jan;9(1):55-66. PubMed, CrossRef
  11. Blaustein MP. Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol. 1993 Jun;264(6 Pt 1):C1367-87. Review. PubMed
  12. Kopaczyñska M, Wang T, Schulz A, Dudic M, Casnati A, Sansone F, Ungaro R, Fuhrhop JH. Scanning force microscopy of upright-standing, isolated calixarene-porphyrin heterodimers. Langmuir. 2005 Aug 30;21(18):8460-5. PubMed, CrossRef
  13. Zhao BT, Blesa MJ, Mercier N, Le Derf F, Sallé M. Bis-calix[4]arenes bridged by an electroactive tetrathiafulvalene unit. J Org Chem. 2005 Aug 5;70(16):6254-7. PubMed, CrossRef
  14. Gutsche CD. Calixarenes Revisited, The Royal Society of Chemistry: Cambridge (1998).
  15. Lumetta GJ, Rogers RD, Gopalan AS. Calixarenes for Separations., American Chemical Society: Washington (2000).
  16. Namor AF, Pugliese A, Casal AR, Llerena MB, Aymonino PJ, Sueros Velarde FJ. The various factors involved in the extraction of alkali metal picrates by calixarene ester derivatives in the mutually saturated water–dichloromethane solvent system.  Phys Chem Chem Phys. 2000; 2(19):4355–60. CrossRef
  17. Talanova GG, Hwang H.-S, Talanov VS,  Richard A. Bartsch RA. Calix[4]arenes with a novel proton-ionizable group: synthesis and metal ion separations.  Chem Commun. 1998;(3)419-420. CrossRef
  18. Pelizzi N, Casnati A, Friggeri A, Ungaro R. Synthesis and properties of new calixarene-based ditopic receptors for the simultaneous complexation of cations and carboxylate anions.  J Chem Soc, Perkin Trans 2. 1998;(6):1307-12. CrossRef
  19. Budka J., Lhotak P., Michlova V., Stibor I. Urea derivatives of calix[4]arene 1,3-alternate: an anion receptor with profound negative allosteric effect. Tetrahedron Lett. 2001 Feb;42(8):1583-6. CrossRef
  20. Arena G, Contino A, Gulino FG, Magri A, Sciotto D, Ungaro R. Complexation of small neutral organic molecules by water soluble calix[4]arenes. Tetrahedron Lett. 2000;41(48):9327-30. CrossRef
  21. Perret F, Lazar AN, Coleman AW. Biochemistry of the para-sulfonato-calix[n]arenes.  Chem Commun (Camb). 2006 Jun 21;(23):2425-38. PubMed, CrossRef
  22. Kalchenko V. I., Rodik R. V., Boiko V. I. Calixarenes. Prospects for biomedical applications. J Organic and Pharmaceutical Chemistry. 2005;3(1):13-29.
  23. da Silva E, Lazar AN, Coleman AW. Biopharmaceutical applications of calixarenes. J Drug Del Sci Tech. 2004;14(1): 3-20. CrossRef
  24. Veklich TO, Shkrabak OA, Kosterin SO, Rodik RV, Cherenok SO, Boyko VI, Kalchenko VI. The calixarenes C-97 and C-107 stimulate influence of ouabain on the Na+,K+-ATPase activity in plasmatic membrane of smooth muscle cells. Ukr Biokhim Zhurn. 2006 Nov-Dec;78(6):53-63. Ukrainian. PubMed
  25. Veklich TO, Kosterin SO, Rodik RV, Cherenok SO, Boyko VI, Kalchenko VI. Effect of calixarene-phosphonic acid on Na+, K+-ATPase activity in plasma membranes of the smooth-muscle cells. Ukr Biokhim Zhurn. 2006 Jan-Feb;78(1):70-86. Ukrainian. PubMed
  26. Veklich TO, Kosterin SO. Comparative study of properties of Na+, K+-ATPase and Mg2+-ATPase of the myometrium plasma membrane. Ukr Biokhim Zhurn. 2005 Mar-Apr;77(2):66-75. Ukrainian. PubMed
  27. Kondratyuk TP, Bychenok SF, Prishchepa LA, Babich LG, Kursky MD, Osipenko AA. Isolation and characteristics of the fraction of plasma membranes in pig myometrium. Ukr Biokhim Zhurn. 1986 Jul-Aug;58(4):50-6. Russian. PubMed
  28. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72(1-2):248-54. PubMed, CrossRef
  29. Flynn ER, Bradley KN, Muir TC, McCarron JG. Functionally separate intracellular Ca2+ stores in smooth muscle. J Biol Chem. 2001 Sep 28;276(39):36411-8.  PubMed, CrossRef
  30. Veklich TO, Kosterin SO, Shinlova OP. Cationic specificity of Ca2+-accumulating system in smooth muscle cell mitochondria. Ukr Biokhim Zhurn. 2002 Jan-Feb;74(1):42-8. Ukrainian. PubMed
  31. Valente RC, Capella LS, Monteiro RQ, Rumjanek VM, Lopes AG, Capella MA. Mechanisms of ouabain toxicity. FASEB J. 2003 Sep;17(12):1700-2. PubMed, CrossRef
  32. Wang H, Haas M, Liang M, Cai T, Tian J, Li S, Xie Z. Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase. J Biol Chem. 2004 Apr 23;279(17):17250-9. PubMed, CrossRef
  33. Rathbun WB, Betlach MV. Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Anal Biochem. 1969 Apr 4;28(1):436-45. PubMed, CrossRef
  34. Cassidy CE, Setzer WN. Cancer-relevant biochemical targets of cytotoxic Lonchocarpus flavonoids: a molecular docking analysis. J Mol Model. 2010 Feb;16(2):311-26. PubMed, CrossRef
  35. Shinoda T, Ogawa H, Cornelius F, Toyoshima C. Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature. 2009 May 21;459(7245):446-50. PubMed, CrossRef
  36. Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG. Structural changes of envelope proteins during alphavirus fusion. Nature. 2010 Dec 2;468(7324):705-8. PubMed, PubMedCentral, CrossRef
  37. Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA–a self-parameterizing force field. Proteins. 2002 May 15;47(3):393-402. PubMed, CrossRef
  38. Morth JP, Pedersen BP, Toustrup-Jensen MS, Sørensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P. Crystal structure of the sodium-potassium pump. Nature. 2007 Dec 13;450(7172):1043-9. PubMed
  39. Ogawa H, Shinoda T, Cornelius F, Toyoshima C. Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13742-7. PubMed, PubMedCentral, CrossRef
  40. Shkrabak OA, Kalchenko OI, Rodik RV, Veklich TO, Kalchenko VI, Kosterin SO. Calixarene-dependent hydrolysis of ATP. I. Kinetics and complexation of the calixarene C-107 with nucleoside triphosphate. Ukr Biokhim Zhurn. 2008 Mar-Apr;80(2):90-100. Ukrainian. PubMed
  41. Toyoshima C, Nakasako M, Nomura H, Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature. 2000 Jun 8;405(6787):647-55. PubMed
  42. Xu C, Rice WJ, He W, Stokes DL. A structural model for the catalytic cycle of Ca(2+)-ATPase. J Mol Biol. 2002 Feb 8;316(1):201-11. PubMed, CrossRef
  43. Tsymbaliuk OV, Onufriychuk OV, Veklich TO, Cherenok SO, Kalchenko VI, Miroshnichenko MS, Kosterin SO. A comparative study of the effects of ouabain and calixarene bis-hydroxymethylphosphonic acid on Na+/K+-ATPase activity on mechanic/kinetic of “contraction-relaxation” process in smooth muscle. Physics Alive. 2006;14(1):53-72.
  44. Geering K. Functional roles of Na,K-ATPase subunits. Curr Opin Nephrol Hypertens. 2008 Sep;17(5):526-32. Review. PubMed, CrossRef
  45. Lingrel JB. The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase. Annu Rev Physiol. 2010;72:395-412. Review. PubMed, PubMedCentral, CrossRef
  46. Yatime L, Laursen M, Morth JP, Esmann M, Nissen P, Fedosova NU. Structural insights into the high affinity binding of cardiotonic steroids to the Na+,K+-ATPase. J Struct Biol. 2011 May;174(2):296-306. PubMed, CrossRef
  47. Toyoshima C, Kanai R, Cornelius F. First crystal structures of Na+,K+-ATPase: new light on the oldest ion pump. Structure. 2011 Dec 7;19(12):1732-8. Review. PubMed, CrossRef
  48. Adamian L, Naveed H, Liang J. Lipid-binding surfaces of membrane proteins: evidence from evolutionary and structural analysis. Biochim Biophys Acta. 2011 Apr;1808(4):1092-102. PubMed, PubMedCentral, CrossRef
  49. Cornelius F, Mahmmoud YA, Toyoshima C. Metal fluoride complexes of Na,K-ATPase: characterization of fluoride-stabilized phosphoenzyme analogues and their interaction with cardiotonic steroids. J Biol Chem. 2011 Aug 26;286(34):29882-92. PubMed, PubMedCentral, CrossRef
  50. Bab-Dinitz E, Albeck S, Peleg Y, Brumfeld V, Gottschalk KE, Karlish SJ. A C-terminal lobe of the beta subunit of Na,K-ATPase and H,K-ATPase resembles cell adhesion molecules. Biochemistry. 2009 Sep 15;48(36):8684-91. PubMed, CrossRef
  51. Hasler U, Crambert G, Horisberger JD, Geering K. Structural and functional features of the transmembrane domain of the Na,K-ATPase beta subunit revealed by tryptophan scanning. J Biol Chem. 2001 May 11;276(19):16356-64. PubMed, CrossRef
  52. Lifshitz Y, Petrovich E, Haviv H, Goldshleger R, Tal DM, Garty H, Karlish SJ. Purification of the human alpha2 Isoform of Na,K-ATPase expressed in Pichia pastoris. Stabilization by lipids and FXYD1. Biochemistry. 2007 Dec 25;46(51):14937-50. PubMed, CrossRef
  53. Mishra NK, Peleg Y, Cirri E, Belogus T, Lifshitz Y, Voelker DR, Apell HJ, Garty H, Karlish SJ. FXYD proteins stabilize Na,K-ATPase: amplification of specific phosphatidylserine-protein interactions. J Biol Chem. 2011 Mar 18;286(11):9699-712. PubMed, PubMedCentral, CrossRef
  54. Yatime L, Buch-Pedersen MJ, Musgaard M, Morth JP, Lund Winther AM, Pedersen BP, Olesen C, Andersen JP, Vilsen B, Schiøtt B, Palmgren MG, Møller JV, Nissen P, Fedosova N. P-type ATPases as drug targets: tools for medicine and science. Biochim Biophys Acta. 2009 Apr;1787(4):207-20. Review. PubMed, CrossRef
  55. De Pont JJ, Swarts HG, Karawajczyk A, Schaftenaar G, Willems PH, Koenderink JB. The non-gastric H,K-ATPase as a tool to study the ouabain-binding site in Na,K-ATPase. Pflugers Arch. 2009 Jan;457(3):623-34. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.