Ukr.Biochem.J. 2015; Volume 87, Issue 6, Nov-Dec, pp. 142-153


Computational modeling of molecular dynamics of G41R mutant form of human tyrosyl-tRNA synthetase, assosiated with Charcot-Marie-Tooth neuropathy

O. V. Savytskyi, A. I. Kornelyuk

Institute of Molecular Biology and Genetics,
National Academy of Sciences of Ukraine, Kyiv;

The computational structural models of human tyrosyl-tRNA synthetase and its mutant form G41R (Charcot-Marie-Tooth associated) were constructed, while their whole structural coordinates are still unknown. Grid-services of MolDynGrid Virtual Labo­ratory and Ukrainian National Grid-infrastructure were used for molecular dynamics (MD) simulations. The analyses of trajectories of MD simulations have shown the β-sheet formation in region Lys147 – Glu157 between Н9 and Н10 helices (CP1 insertion of Rossman fold) for G41R mutant.

Keywords: , , , , , , ,


  1. Antonellis A, Lee-Lin SQ, Wasterlain A, Leo P, Quezado M, Goldfarb LG, Myung K, Burgess S, Fischbeck KH, Green ED. Functional analyses of glycyl-tRNA synthetase mutations suggest a key role for tRNA-charging enzymes in peripheral axons. J Neurosci. 2006 Oct 11;26(41):10397-406. PubMed, CrossRef
  2. Antonellis A, Ellsworth RE, Sambuughin N, Puls I, Abel A, Lee-Lin SQ, Jordanova A, Kremensky I, Christodoulou K, Middleton LT, Sivakumar K, Ionasescu V, Funalot B, Vance JM, Goldfarb LG, Fischbeck KH, Green ED. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet. 2003 May;72(5):1293-9. PubMed, PubMedCentralCrossRef
  3.  Dubourg O, Azzedine H, Yaou RB, Pouget J, Barois A, Meininger V, Bouteiller D, Ruberg M, Brice A, LeGuern E. The G526R glycyl-tRNA synthetase gene mutation in distal hereditary motor neuropathy type V. Neurology. 2006 Jun 13;66(11):1721-6. PubMed, CrossRef
  4. Seburn KL, Nangle LA, Cox GA, Schimmel P, Burgess RW. An active dominant mutation of glycyl-tRNA synthetase causes neuropathy in a Charcot-Marie-Tooth 2D mouse model. Neuron. 2006 Sep 21;51(6):715-26. PubMed, CrossRef
  5. Nangle LA, Zhang W, Xie W, Yang XL, Schimmel P. Charcot-Marie-Tooth disease-associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect.  Proc Natl Acad Sci USA. 2007 Jul 3;104(27):11239-44.  PubMed, PubMedCentralCrossRef
  6.  Jordanova A, Irobi J, Thomas FP, Van Dijck P, Meerschaert K, Dewil M, Dierick I, Jacobs A, De Vriendt E, Guergueltcheva V, Rao CV, Tournev I, Gondim FA, D’Hooghe M, Van Gerwen V, Callaerts P, Van Den Bosch L, Timmermans JP, Robberecht W, Gettemans J, Thevelein JM, De Jonghe P, Kremensky I, Timmerman V. Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat Genet. 2006 Feb;38(2):197-202. PubMed, CrossRef
  7. Jordanova A, Thomas FP, Guergueltcheva V, Tournev I, Gondim FA, Ishpekova B, De Vriendt E, Jacobs A, Litvinenko I, Ivanova N, Buzhov B, De Jonghe P, Kremensky I, Timmerman V. Dominant intermediate Charcot-Marie-Tooth type C maps to chromosome 1p34-p35. Am J Hum Genet. 2003 Dec;73(6):1423-30.  PubMed, PubMedCentral, CrossRef
  8. Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature. 2006 Sep 7;443(7107):50-5.  PubMed, CrossRef
  9. Roy H, Ibba M.Molecular biology: sticky end in protein synthesis.  Nature. 2006 Sep 7;443(7107):41-2.  PubMed, CrossRef
  10.  Berger P, Niemann A, Suter U. Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot-Marie-Tooth disease). Glia. 2006 Sep;54(4):243-57. PubMed, CrossRef
  11. Roa BB, Greenberg F, Gunaratne P, Sauer CM, Lubinsky MS, Kozma C, Meck JM, Magenis RE, Shaffer LG, Lupski JR. Duplication of the PMP22 gene in 17p partial trisomy patients with Charcot-Marie-Tooth type-1 neuropathy. Hum Genet. 1996 May;97(5):642-9. PubMed, CrossRef
  12.  Froelich CA, First EA. Dominant Intermediate Charcot-Marie-Tooth disorder is not due to a catalytic defect in tyrosyl-tRNA synthetase. Biochemistry. 2011 Aug 23;50(33):7132-45. PubMedCrossRef
  13.  Xie W, Nangle LA, Zhang W, Schimmel P, Yang XL. Long-range structural effects of a Charcot-Marie-Tooth disease-causing mutation in human glycyl-tRNA synthetase. Proc Natl Acad Sci USA. 2007 Jun 12;104(24):9976-81. PubMed, PubMedCentralCrossRef
  14.  Odynets K. A., Kornelyuk A. I. Bioinformatical analysis of influence of human tyrosyl-tRNA synthetase mutations associated with neuropathy Charcot-Marie-Tooth, type C, on its local spatial structure properties. Biopolym Cell. 2007;23(5): 449-460. CrossRef
  15. Yang XL, Skene RJ, McRee DE, Schimmel P. Crystal structure of a human aminoacyl-tRNA synthetase cytokine. Proc Natl Acad Sci USA. 2002 Nov 26;99(24):15369-74.
    PubMed, PubMedCentral
  16. Kornelyuk OI, Mintser OP. Up-to-date computer grid-technologies and their application in medical researches. Med Inform Eng. 2008;1:23-29.
  17. Salnikov AO, Sliusar IA, Sudakov OO, Savytskyi OV, Kornelyuk AI. MolDynGrid virtual laboratory as a part of Ukrainian Academic Grid infrastructure. Proceedings of the 5th IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2009. 2009;1:237-240. CrossRef
  18. Salnikov A, Sliusar I, Sudakov O, Savytskyi O, Kornelyuk A. Virtual laboratory MolDynGrid as a part of scientific infrastructure for biomolecular simulations. Int J  Computing. 2010;9(4):294-300.
  19. Mykuliak VV, Dragan AI, Kornelyuk AI. Structural states of the flexible catalytic loop of M. tuberculosis tyrosyl-tRNA synthetase in different enzyme-substrate complexes. Eur Biophys J. 2014 Dec;43(12):613-22.  PubMed, CrossRef
  20.  Salnikov А, Sudakov O, Savytskyi O, Sliusar I, Kornelyuk A. The integrated environment of virtual laboratory moldyngrid for calculation of molecular dynamics of biopolymers. Med Inform Eng. 2010; 1: 24-32.
  21. Avramenko V, Zagorodniy А, Martynov Ye. Peculiarities of grid-technology aplication in medicine. Visnuk NAN Ukrainy. 2008; 10: 5-15.
  22. Yesylevskyy SO, Savytskyi OV, Odynets KA, Kornelyuk AI. Interdomain compactization in human tyrosyl-tRNA synthetase studied by the hierarchical rotations technique.  Biophys Chem. 2011 Mar;154(2-3):90-8.  PubMed, CrossRef
  23. Savytskyi OV, Yesylevskyy SO, Kornelyuk AI. Asymmetric structure and domain binding interfaces of human tyrosyl-tRNA synthetase studied by molecular dynamics simulations. J Mol Recognit. 2013 Feb;26(2):113-20. PubMed, CrossRef
  24. Hess B, Kutzner Carsten, van der Spoel D, Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comp. 2008; 4(3): 435-447.  CrossRef
  25. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem. 2004 Oct;25(13):1656-76. PubMedCrossRef
  26. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb;14(1):33-8, 27-8. PubMed, CrossRef
  27.  Savytskyi OV, Sliusar IA, Yesylevskyy SO, Stirenko SG, Kornelyuk AI. Integrated tools for molecular dynamics simulation data analysis in the MolDynGrid virtual laboratory. Proceedings of the 6-th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2011. 2011;1:209-211. CrossRef
  28.  Yesylevskyy SO. Pteros 2.0: Evolution of the fast parallel molecular analysis library for C++ and python. J Comput Chem. 2015 Jul 15;36(19):1480-8.  PubMedCrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.