Ukr.Biochem.J. 2015; Volume 87, Issue 6, Nov-Dec, pp. 86-94

doi: https://doi.org/10.15407/ubj87.06.086

Protective effects of potassium transport in mitochondria from rat myometrium under activation of mitochondrial permeability transition pore

O. B. Vadzyuk

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: olga_vadzyuk@hotmail.com

We demonstrated using PBFI K+-sensitive fluorescent probe an enhancement of both components of K+-cycle – the ATP-sensitive K+-uptake and quinine-sensitive K+/H+-exchange – under the Ca2+ induced opening­ of mitochondrial permeability transition pore (MPTP) in rat myometrium mitochondria. Addition of CaCl2 (100 μM) to K+-free medium results in the enhancement of reactive oxygen species (ROS) production, which was eliminated by cyclosporine A. Addition of CaCl2 to K+-rich medium did not increase the rate of ROS production, but blocking of mitoK+ATP-channels with glybenclamide (10 μM) increased production of ROS. We conclude that K+-cycle exerts a protective influence in mitochondria from rat myometrium by regulation of matrix volume and rate of ROS production under the condition of Ca2+-induced MPTP.

Keywords: , , , , ,


References:

  1. Pagliarini DJ, Rutter J. Hallmarks of a new era in mitochondrial biochemistry. Genes Dev. 2013 Dec 15;27(24):2615-27. Review. PubMed, PubMedCentral, CrossRef
  2. Garlid KD, Paucek P. Mitochondrial potassium transport: the K(+) cycle. Biochim Biophys Acta. 2003 Sep 30;1606(1-3):23-41. Review. PubMed, CrossRef
  3. Giorgi C, Agnoletto C, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Suski JM, Wieckowski MR, Pinton P. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion. 2012 Jan;12(1):77-85. Review. PubMed, PubMedCentral, CrossRef
  4. Mahn K, Ojo OO, Chadwick G, Aaronson PI, Ward JP, Lee TH. Ca(2+) homeostasis and structural and functional remodelling of airway smooth muscle in asthma. Thorax. 2010 Jun;65(6):547-52. Review. PubMed, CrossRef
  5. Marín-García J. Mitochondria and Their Role in Cardiovascular Disease Heart Mitochondrial ROS and Oxidative Stress. New York Heidelberg, Dordrecht, London: Springe, 2013.
  6. Szabo I, Zoratti M. Mitochondrial channels: ion fluxes and more. Physiol Rev. 2014 Apr;94(2):519-608. Review. PubMed, CrossRef
  7. Pasdois P, Beauvoit B, Tariosse L, Vinassa B, Bonoron-Adele S, Dos Santos P. Effect of diazoxide on flavoprotein oxidation and reactive oxygen species generation during ischemia-reperfusion: a study on Langendorff-perfused rat hearts using optic fibers. Am J Physiol Heart C. 2008; 294(5): H2088-H2097. CrossRef
  8. Costa AD, Quinlan CL, Andrukhiv A, West IC, Jabůrek M, Garlid KD. The direct physiological effects of mitoK(ATP) opening on heart mitochondria. Am J Physiol Heart Circ Physiol. 2006 Jan;290(1):H406-15. PubMed, CrossRef
  9. Andrukhiv A, Costa AD, West IC, Garlid KD. Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol. 2006 Nov;291(5):H2067-74. PubMed, CrossRef
  10. Simkhovich BZ, Przyklenk K, Kloner RA. Role of protein kinase C in ischemic “conditioning”: from first evidence to current perspectives. J Cardiovasc Pharmacol Ther. 2013 Nov;18(6):525-32. Review. PubMed, CrossRef
  11. Campbell A. Intracellular Calcium. Chichester.: Wiley: 2015.
  12. Hawrysh PJ, Buck LT. Anoxia-mediated calcium release through the mitochondrial permeability transition pore silences NMDA receptor currents in turtle neurons. J Exp Biol. 2013 Dec 1;216(Pt 23):4375-87. PubMed, CrossRef
  13. Szewczyk A, Jarmuszkiewicz W, Kunz WS. Mitochondrial potassium channels. IUBMB Life. 2009 Feb;61(2):134-43. Review. PubMed, CrossRef
  14. Facundo HT, de Paula JG, Kowaltowski AJ. Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production. Free Radic Biol Med. 2007 Apr 1;42(7):1039-48. PubMed, CrossRef
  15. Dahlem YA, Horn TF, Buntinas L, Gonoi T, Wolf G, Siemen D. The human mitochondrial KATP channel is modulated by calcium and nitric oxide: a patch-clamp approach. Biochim Biophys Acta. 2004 May 12;1656(1):46-56. PubMed, CrossRef
  16. Vadzyuk ОB, Kosterin SO. Activation of glybenclamide-sensitive mitochondrial swelling under induction of cyclosporin of A-sensitive mitochondrial pore. Ukr Biochem J. 2014 Jul-Aug;86(4):51-60. PubMed, CrossRef
  17. Hansson MJ, Morota S, Teilum M, Mattiasson G, Uchino H, Elmér E. Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume. J Biol Chem. 2010 Jan 1;285(1):741-50. PubMed, PubMedCentral, CrossRef
  18. Jabůrek M, Yarov-Yarovoy V, Paucek P, Garlid KD. State-dependent inhibition of the mitochondrial KATP channel by glyburide and 5-hydroxydecanoate. J Biol Chem. 1998 May 29;273(22):13578-82. PubMed
  19. Lebuffe G, Schumacker PT, Shao ZH, Anderson T, Iwase H, Vanden Hoek TL. ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. Am J Physiol Heart Circ Physiol. 2003 Jan;284(1):H299-308.  PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.