Ukr.Biochem.J. 2017; Volume 89, Issue 6, Nov-Dec, pp. 31-38


Changes in proHB-EGF expression after functional activation of the immune system cells

T. O. Chudina1,2, A. J. Labintsev1, S. I. Romaniuk1, D. V. Kolybo1, S. V. Komisarenko1

1Palladin Institute of Biochemistry, National Academy  of Sciences of Ukraine, Kyiv;
2ESC Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Ukraine;

The level of proHB-EGF expression on J774, Raji, KG-1 cells derived from different types of human and mouse immune system cells under the standard in vitro culture conditions and during functional activation of these cells was investigated. Changes in the proHB-EGF expression on the cell surface were found to depend on the density of cell population, the content of fetal bovine serum in the culture medium, the effect of mitogenic factors – bacterial lipopolysaccharide, an inactive full-size form of diphtheria toxin (CRM197) and recombinant soluble HB-EGF – rsHB-EGF. The results obtained are important for the understanding of the functional role of proHB-EGF receptor on the surface of macrophage-like cells and B lymphocytes and indicate the involvement of this receptor in immune response regulation in an organism.

Keywords: , , , , , , , ,


  1. Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science. 1991 Feb 22;251(4996):936-9. PubMed, CrossRef
  2. Yan Y, Shirakabe K, Werb Z. The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors. J Cell Biol. 2002 Jul 22;158(2):221-6.  PubMed, PubMedCentral, CrossRef
  3. Jones JT, Akita RW, Sliwkowski MX. Binding specificities and affinities of egf domains for ErbB receptors. FEBS Lett. 1999 Mar 26;447(2-3):227-31. PubMed, CrossRef
  4. Auf G, Jabouille A, Delugin M, Guérit S, Pineau R, North S, Platonova N, Maitre M, Favereaux A, Vajkoczy P, Seno M, Bikfalvi A, Minchenko D, Minchenko O. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor. BMC Cancer. 2013; 1(1): 597. CrossRef
  5. Besner G, Higashiyama S, Klagsbrun M. Isolation and characterization of a macrophage-derived heparin-binding growth factor. Cell Regul. 1990 Oct;1(11):811-9. PubMed, PubMedCentral, CrossRef
  6. Nakamura K, Iwamoto R, Mekada E. Membrane-anchored heparin-binding EGF-like growth factor (HB-EGF) and diphtheria toxin receptor-associated protein (DRAP27)/CD9 form a complex with integrin alpha 3 beta 1 at cell-cell contact sites. J Cell Biol. 1995 Jun;129(6):1691-705. PubMed, PubMedCentral, CrossRef
  7. Raab G, Klagsbrun M. Heparin-binding EGF-like growth factor. Biochim Biophys Acta. 1997 Dec 9;1333(3):F179-99. PubMed, CrossRef
  8. Naglich JG, Metherall JE, Russell DW, Eidels L. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell. 1992 Jun 12;69(6):1051-61. PubMed, CrossRef
  9. Kolibo DV, Romanyuk SI, Radavskiy YuL, Komisarenko SV. Influence of diphtheria toxin on the vitality of phagocytes and B-lymphocytes of the animals sensitive and insensitive to it. Ukr Biokhim Zhurn. 2002; 74(2): 30-36. PubMed
  10. Van Ness BG, Howard JB, Bodley JW. ADP-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J Biol Chem. 1980 Nov 25;255(22):10717-20. PubMed
  11. Collier RJ. Diphtheria toxin: mode of action and structure. Bacteriol Rev. 1975 Mar;39(1):54-85. PubMed, PubMedCentral
  12. Vaughan TJ, Pascall JC, Brown KD. Tissue distribution of mRNA for heparin-binding epidermal growth factor. Biochem J. 1992 Nov 1;287(Pt 3):681-4. PubMed, PubMedCentral, CrossRef
  13. Blotnick S, Peoples GE, Freeman MR, Eberlein TJ, Klagsbrun M. T lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts: differential production and release by CD4+ and CD8+ T cells. Proc Natl Acad Sci USA. 1994 Apr 12;91(8):2890-94.  PubMed, PubMedCentral, CrossRef
  14. De Vos J, Couderc G, Tarte K, Jourdan M, Requirand G, Delteil MC, Rossi JF, Mechti N, Klein B. Identifying intercellular signaling genes expressed in malignant plasma cells by using complementary DNA arrays. Blood. 2001 Aug 1;98(3):771-80. PubMed, CrossRef
  15. Labyntsev AJ, Korotkevych NV, Manoilov KJ, Kaberniuk AA, Kolybo DV, Komisarenko SV. Recombinant fluorescent models for studying the diphtheria toxin. Russ J Bioorg Chem. 2014; 40(4): 401-409. PubMed, CrossRef
  16. Korotkevich NV, Kolibo DV, Labyntsev AJ, Romaniuk SI, Komisarenko SV. Obtaining of recombinant human heparin binding EGF-like growth factor and perspectives of its application in biotechnology. Biotechnology. 2010; 3(4):44-54. (In Ukrainian).
  17. Kaberniuk AA, Labyntsev AJ, Kolybo DV, Oliinyk OS, Redchuk TA, Korotkevich NV, Horchev VF, Karakhim SO, Komisarenko SV. Fluorescent derivatives of diphtheria toxin subunit B and their interaction with Vero cells. Ukr Biokhim Zhurn. 2009 Jan-Feb;81(1):67-77. (In Ukrainia). PubMed
  18. Labyntsev AJ, Korotkevich NV, Kaberniuk AA, Romaniuk SI, Kolybo DV, Komisarenko SV. Interaction of diphtheria toxin B subunit with sensitive and insensitive mammalian cells. Ukr Biokhim Zhurn. 2010 Nov-Dec;82(6):65-75. (In Ukrainian). PubMed
  19. Labyntsev AJ, Korotkevych NV, Kolybo DV, Komisarenko SV. Effect of diphtheria toxin T-domain on endosomal pH. Ukr Biochem J. 2015 Jul-Aug;87(4):13-23. PubMed, CrossRef
  20. Abraham JA, Damm D, Bajardi A, Miller J, Klagsbrun M, Ezekowitz RA. Heparin-binding EGF-like growth factor: characterization of rat and mouse cDNA clones, protein domain conservation across species, and transcript expression in tissues. Biochem Biophys Res Commun. 1993 Jan 15;190(1):125-33. PubMed, CrossRef
  21. Hasuwa H, Shishido Y, Yamazaki A, Kobayashi T, Yu X, Mekada E. CD9 amino acids critical for upregulation of diphtheria toxin binding. Biochem Biophys Res Commun. 2001 Dec 14;289(4):782-90. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.