Ukr.Biochem.J. 2019; Volume 91, Issue 1, Jan-Feb, pp. 80-85
doi: https://doi.org/10.15407/ubj91.01.080
Role of AP-1 transcriptional factor in development of oxidative and nitrosative stress in periodontal tissues during systemic inflammatory response
A. M. Yelins’ka, O. Ye. Akimov, V. O. Kostenko
Ukrainian Medical Stomatological Academy, Poltava, Ukraine;
e-mail: riseofrevan5@gmail.com
Received: 04 August 2018; Accepted: 13 December 2018
Chronic systemic inflammatory response syndrome (SIRS) underlies many diseases (sepsis, atherosclerosis, diabetes mellitus). According to research data of recent years the key role in the development of SIRS is played by the activation of various nuclear transcription factors. The work was aimed at studying the role of such transcription factor as activator protein 1 (AP-1) in the development of oxidative and nitrosative stress in soft periodontal tissues during chronic systemic inflammatory response (SIRS). The experiment was carried out on 24 the Wistar rats. We induced SIRS by bacterial lipopolysaccharide of Salmonella typhi (0.4 μg/kg) intraperitoneal injection. We studied changes in the functioning of the nitric oxide (NO) cycle, the production of superoxide anion radical (O2•-) and the activity of antioxidant enzymes in soft periodontal tissues homogenate. We used SR11302 as an Ap-1 inhibitor (15 mg/kg) for 2 months. We established that during the SIRS modeling, the activity of antioxidant enzymes in soft periodontal tissues decreased with a simultaneous increase in the production of O2•-. SIRS elevated the production of NO by inducible NO-synthase (iNOS) and nitrite reductases. The nonoxidative cleavage of L-arginine under this condition was also increased. The concentration of peroxynitrite (ONOO–) was shown to be elevated more than 2-fold. The inhibition of AP-1 by SR11302 normalized the functional state of the NO cycle, reduced O2•- production and restored the activity of antioxidant enzymes. In this way, under SIRS conditions, “vicious circle” of ONOO– formation is formed. SIRS in soft periodontal tissues poses a threat of oxidative and nitrosative stress development. Usage of AP-1 activation inhibitor SR11302 breaks “vicious circle” of ONOO– formation.
Keywords: activator protein 1 (AP-1), nitric oxide cycle, periodontium, superoxide-anion-radical, systemic inflammatory response
References:
- Bone RC, Sibbald WJ, Sprung CL. The ACCP-SCCM consensus conference on sepsis and organ failure. Chest. 1992 Jun;101(6):1481-3. PubMed, CrossRef
- Gerasymenko ND. The role of systemic inflammation and peroxisome proliferator-activated receptors, in the pathogenesis of hypertension. Bull Probl Biol Med. 2015; 120(3):16-19. (In Russian).
- Bayani M, Pourali M, Keivan M. Possible interaction between visfatin, periodontal infection, and other systemic diseases: A brief review of literature. Eur J Dent. 2017 Jul-Sep;11(3):407-410. PubMed, PubMedCentral, CrossRef
- Li X, Peng H, Wu J, Xu Y. Brain Natriuretic Peptide-Regulated Expression of Inflammatory Cytokines in Lipopolysaccharide (LPS)-Activated Macrophages via NF-κB and Mitogen Activated Protein Kinase (MAPK) Pathways. Med Sci Monit. 2018 May 13;24:3119-3126. PubMed, PubMedCentral, CrossRef
- Yelins’ka AM, Shvaykovs’ka OO, Kostenko VO. Sources of production of reactive oxygen and nitrogen species in tissues of periodontium and salivary glands of rats under modeled systemic inflammation. Probl Ekol Med. 2017; 21(3-4):51–54.
- Akimov OY, Kostenko VO. Functioning of nitric oxide cycle in gastric mucosa of rats under excessive combined intake of sodium nitrate and fluoride. Ukr Biochem J. 2016 Nov-Dec;88(6):70-5. PubMed, CrossRef
- Kostenko VO, Tsebrzhins’kii OI. Production of superoxide anion radical and nitric oxide in renal tissues sutured with different surgical suture material. Fiziol Zh. 2000;46(5):56-62. (In Ukrainian). PubMed
- Kaidashev IP. Methods of clinical and experimental research in medicine. Poltava: Polimet, 2003. 319 p. (In Ukrainian).
- Koroliuk MA, Ivanova LI, Mayorova IG, Tokarev VE. A method of determining catalase activity. Lab Delo. 1988;(1):16-9. (In Russian). PubMed
- Rabelo LA, Ferreira FO, Nunes-Souza V, da Fonseca LJ, Goulart MO. Arginase as a Critical Prooxidant Mediator in the Binomial Endothelial Dysfunction-Atherosclerosis. Oxid Med Cell Longev. 2015;2015:924860. PubMed, PubMedCentral, CrossRef
- Mori M. Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr. 2007 Jun;137(6 Suppl 2):1616S-1620S. PubMed, CrossRef
- Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012 Apr;33(7):829-37, 837a-837d. PubMed, PubMedCentral, CrossRef
- Cao Y, Zhang X, Shang W, Xu J, Wang X, Hu X, Ao Y, Cheng H. Proinflammatory Cytokines Stimulate Mitochondrial Superoxide Flashes in Articular Chondrocytes In Vitro and In Situ. PLoS One. 2013 Jun 19;8(6):e66444. PubMed, PubMedCentral, CrossRef
- Barbieri SS, Amadio P, Gianellini S, Zacchi E, Weksler BB, Tremoli E. Tobacco smoke regulates the expression and activity of microsomal prostaglandin E synthase-1: role of prostacyclin and NADPH-oxidase. FASEB J. 2011 Oct;25(10):3731-40. PubMed, CrossRef
- Burke SJ, Updegraff BL, Bellich RM, Goff MR, Lu D, Minkin SC Jr, Karlstad MD, Collier JJ. Regulation of iNOS gene transcription by IL-1β and IFN-γ requires a coactivator exchange mechanism. Mol Endocrinol. 2013 Oct;27(10):1724-42. PubMed, PubMedCentral, CrossRef
- Starodubtseva MN. Dual role of peroxynitrite in organism. Probl Health Ecology. 2004;1:35-41. (In Russian).
- Bartesaghi S, Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018 Apr;14:618-625. PubMed, PubMedCentral, CrossRef
- Radi R. Peroxynitrite reactions and diffusion in biology. Chem Res Toxicol. 1998 Jul;11(7):720-1. PubMed, CrossRef
- Tao X, Sun X, Xu L, Yin L, Han X, Qi Y, Xu Y, Zhao Y, Wang C, Peng J. Total Flavonoids from Rosa laevigata Michx Fruit Ameliorates Hepatic Ischemia/Reperfusion Injury through Inhibition of Oxidative Stress and Inflammation in Rats. Nutrients. 2016 Jul 8;8(7). pii: E418. PubMed, PubMedCentral, CrossRef
- Kankaanranta H, Ilmarinen P, Zhang X, Adcock IM, Lahti A, Barnes PJ, Giembycz MA, Lindsay MA, Moilanen E. Tumour necrosis factor-α regulates human eosinophil apoptosis via ligation of TNF-receptor 1 and balance between NF-κB and AP-1. PLoS One. 2014 Feb 28;9(2):e90298. PubMed, PubMedCentral, CrossRef
- Fujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T, Li Z, Evans DB, Abbruzzese JL, Chiao PJ. NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity. Mol Cell Biol. 2004 Sep;24(17):7806-19. PubMed, PubMedCentral, CrossRef
- Jang B, Ishigami A, Kim YS, Choi EK. The Peptidylarginine Deiminase Inhibitor Cl-Amidine Suppresses Inducible Nitric Oxide Synthase Expression in Dendritic Cells. Int J Mol Sci. 2017 Oct 27;18(11). pii: E2258. PubMed, PubMedCentral, CrossRef
- González-Rubio S, Linares CI, Aguilar-Melero P, Rodríguez-Perálvarez M, Montero-Álvarez JL, de la Mata M, Ferrín G. AP-1 Inhibition by SR 11302 Protects Human Hepatoma HepG2 Cells from Bile Acid-Induced Cytotoxicity by Restoring the NOS-3 Expression. PLoS One. 2016 Aug 4;11(8):e0160525. PubMed, PubMedCentral, CrossRef
- Chan CF, Sun WZ, Lin JK, Lin-Shiau SY. Activation of transcription factors of nuclear factor kappa B, activator protein-1 and octamer factors in hyperalgesia. Eur J Pharmacol. 2000 Aug 18;402(1-2):61-8. PubMed, CrossRef
- Sharda DR, Yu S, Ray M, Squadrito ML, De Palma M, Wynn TA, Morris SM Jr, Hankey PA. Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. J Immunol. 2011 Sep 1;187(5):2181-92. PubMed, PubMedCentral, CrossRef
