Ukr.Biochem.J. 2019; Volume 91, Issue 1, Jan-Feb, pp. 80-85


Role of AP-1 transcriptional factor in development of oxidative and nitrosative stress in periodontal tissues during systemic inflammatory response

A. M. Yelins’ka, O. Ye. Akimov, V. O. Kostenko

Ukrainian Medical Stomatological Academy, Poltava, Ukraine;

Received: 04 August 2018; Accepted: 13 December 2018

Chronic systemic inflammatory response syndrome (SIRS) underlies many diseases (sepsis, atherosclerosis, diabetes mellitus). According to research data of recent years the key role in the development of SIRS is played by the activation of various nuclear transcription factors. The work was aimed at studying the role of such transcription factor as activator protein 1 (AP-1) in the development of oxidative and nitrosative stress in soft periodontal tissues during chronic systemic inflammatory response (SIRS). The experiment was carried out on 24 the Wistar rats. We induced SIRS by bacterial lipopolysaccharide of Salmonella typhi (0.4 μg/kg) intraperitoneal injection. We studied changes in the functioning of the nitric oxide (NO) cycle, the production of superoxide anion radical (O2•-) and the activity of antioxidant enzymes in soft periodontal tissues homogenate. We used SR11302 as an Ap-1 inhibitor (15 mg/kg) for 2 months. We established that during the SIRS modeling, the activity of antioxidant enzymes in soft periodontal tissues decreased with a simultaneous increase in the production of O2•-. SIRS elevated the production of NO by inducible NO-synthase (iNOS) and nitrite reductases. The nonoxidative cleavage of L-arginine under this condition was also increased. The concentration of peroxynitrite (ONOO) was shown to be elevated more than 2-fold. The inhibition of AP-1 by SR11302 normalized the functional state of the NO cycle, reduced O2•- production and restored the activity of antioxidant enzymes. In this way, under SIRS conditions, “vicious circle” of ONOO formation is formed. SIRS in soft periodontal tissues poses a threat of oxidative and nitrosative stress development. Usage of AP-1 activation inhibitor SR11302 breaks “vicious circle” of ONOO formation.

Keywords: , , , ,


  1. Bone RC, Sibbald WJ, Sprung CL. The ACCP-SCCM consensus conference on sepsis and organ failure. Chest. 1992 Jun;101(6):1481-3. PubMed, CrossRef
  2. Gerasymenko ND. The role of systemic inflammation and peroxisome proliferator-activated receptors, in the pathogenesis of hypertension. Bull Probl Biol Med. 2015; 120(3):16-19. (In Russian).
  3. Bayani M, Pourali M, Keivan M. Possible interaction between visfatin, periodontal infection, and other systemic diseases: A brief review of literature. Eur J Dent. 2017 Jul-Sep;11(3):407-410. PubMed, PubMedCentral, CrossRef
  4. Li X, Peng H, Wu J, Xu Y. Brain Natriuretic Peptide-Regulated Expression of Inflammatory Cytokines in Lipopolysaccharide (LPS)-Activated Macrophages via NF-κB and Mitogen Activated Protein Kinase (MAPK) Pathways. Med Sci Monit. 2018 May 13;24:3119-3126. PubMed, PubMedCentral, CrossRef
  5. Yelins’ka AM, Shvaykovs’ka OO, Kostenko VO. Sources of production of reactive oxygen and nitrogen species in tissues of periodontium and salivary glands of rats under modeled systemic inflammation. Probl Ekol Med. 2017; 21(3-4):51–54.
  6. Akimov OY, Kostenko VO. Functioning of nitric oxide cycle in gastric mucosa of rats under excessive combined intake of sodium nitrate and fluoride. Ukr Biochem J. 2016 Nov-Dec;88(6):70-5. PubMed, CrossRef
  7. Kostenko VO, Tsebrzhins’kii OI. Production of superoxide anion radical and nitric oxide in renal tissues sutured with different surgical suture material. Fiziol Zh. 2000;46(5):56-62. (In Ukrainian). PubMed
  8. Kaidashev IP. Methods of clinical and experimental research in medicine. Poltava: Polimet, 2003. 319 p. (In Ukrainian).
  9. Koroliuk MA, Ivanova LI, Mayorova IG, Tokarev VE. A method of determining catalase activity. Lab Delo. 1988;(1):16-9. (In Russian).  PubMed
  10. Rabelo LA, Ferreira FO, Nunes-Souza V, da Fonseca LJ, Goulart MO. Arginase as a Critical Prooxidant Mediator in the Binomial Endothelial Dysfunction-Atherosclerosis. Oxid Med Cell Longev. 2015;2015:924860. PubMed, PubMedCentral, CrossRef
  11. Mori M. Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr. 2007 Jun;137(6 Suppl 2):1616S-1620S. PubMed, CrossRef
  12. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012 Apr;33(7):829-37, 837a-837d.  PubMed, PubMedCentral, CrossRef
  13. Cao Y, Zhang X, Shang W, Xu J, Wang X, Hu X, Ao Y, Cheng H. Proinflammatory Cytokines Stimulate Mitochondrial Superoxide Flashes in Articular Chondrocytes In Vitro and In Situ. PLoS One. 2013 Jun 19;8(6):e66444.  PubMed, PubMedCentral, CrossRef
  14. Barbieri SS, Amadio P, Gianellini S, Zacchi E, Weksler BB, Tremoli E. Tobacco smoke regulates the expression and activity of microsomal prostaglandin E synthase-1: role of prostacyclin and NADPH-oxidase. FASEB J. 2011 Oct;25(10):3731-40.  PubMed, CrossRef
  15. Burke SJ, Updegraff BL, Bellich RM, Goff MR, Lu D, Minkin SC Jr, Karlstad MD, Collier JJ. Regulation of iNOS gene transcription by IL-1β and IFN-γ requires a coactivator exchange mechanism. Mol Endocrinol. 2013 Oct;27(10):1724-42. PubMed, PubMedCentral, CrossRef
  16. Starodubtseva MN. Dual role of peroxynitrite in organism. Probl Health Ecology. 2004;1:35-41. (In Russian).
  17. Bartesaghi S, Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018 Apr;14:618-625.  PubMed, PubMedCentral, CrossRef
  18. Radi R. Peroxynitrite reactions and diffusion in biology. Chem Res Toxicol. 1998 Jul;11(7):720-1. PubMed, CrossRef
  19. Tao X, Sun X, Xu L, Yin L, Han X, Qi Y, Xu Y, Zhao Y, Wang C, Peng J. Total Flavonoids from Rosa laevigata Michx Fruit Ameliorates Hepatic Ischemia/Reperfusion Injury through Inhibition of Oxidative Stress and Inflammation in Rats. Nutrients. 2016 Jul 8;8(7). pii: E418.  PubMed, PubMedCentral, CrossRef
  20. Kankaanranta H, Ilmarinen P, Zhang X, Adcock IM, Lahti A, Barnes PJ, Giembycz MA, Lindsay MA, Moilanen E. Tumour necrosis factor-α regulates human eosinophil apoptosis via ligation of TNF-receptor 1 and balance between NF-κB and AP-1. PLoS One. 2014 Feb 28;9(2):e90298. PubMed, PubMedCentral, CrossRef
  21. Fujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T, Li Z, Evans DB, Abbruzzese JL, Chiao PJ. NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity. Mol Cell Biol. 2004 Sep;24(17):7806-19. PubMed, PubMedCentral, CrossRef
  22. Jang B, Ishigami A, Kim YS, Choi EK. The Peptidylarginine Deiminase Inhibitor Cl-Amidine Suppresses Inducible Nitric Oxide Synthase Expression in Dendritic Cells. Int J Mol Sci. 2017 Oct 27;18(11). pii: E2258. PubMed, PubMedCentral, CrossRef
  23. González-Rubio S, Linares CI, Aguilar-Melero P, Rodríguez-Perálvarez M, Montero-Álvarez JL, de la Mata M, Ferrín G. AP-1 Inhibition by SR 11302 Protects Human Hepatoma HepG2 Cells from Bile Acid-Induced Cytotoxicity by Restoring the NOS-3 Expression. PLoS One. 2016 Aug 4;11(8):e0160525. PubMed, PubMedCentral, CrossRef
  24. Chan CF, Sun WZ, Lin JK, Lin-Shiau SY. Activation of transcription factors of nuclear factor kappa B, activator protein-1 and octamer factors in hyperalgesia. Eur J Pharmacol. 2000 Aug 18;402(1-2):61-8. PubMed, CrossRef
  25. Sharda DR, Yu S, Ray M, Squadrito ML, De Palma M, Wynn TA, Morris SM Jr, Hankey PA. Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. J Immunol. 2011 Sep 1;187(5):2181-92.  PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.