Ukr.Biochem.J. 2019; Volume 91, Issue 6, Nov-Dec, pp. 96-102


Fatty acids composition of Bacillus subtilis ONU551 lipids

Т. V. Gudzenko, O. V. Voliuvach, O. G. Gorshkova,
А. М. Ostapchuk, V. O. Ivanytsia

Оdesa National I.I. Mechnykov University, Ukraine;

Received: 11 March 2019; Accepted: 18 October 2019

The aim of the study was to determine the cellular lipids fatty acid composition for  identification of the Bacillus subtilis ONU551 strain bacteria, which is a phenol destructor. Fatty acids analysis of B. subtilis ONU551 strain was performed using an automatic system for microorganisms’ identification MIDI Sherlock (MIDI, USA) based on gas chromatograph Agilent 7890. Chromatograms analysis showed that the fatty acid spectrum of the strain B. subtilis ONU551 consisted predominately of branched structural isomers of saturated acids: 13-methyltetradecanoic (15:0 iso; 34.72%) and 12-methyltetradecanoic (15:0 anteiso; 33.72%) acids. The total content of the branched saturated fatty acids was 88.16% – 14:0 iso (0.52%), 15:0 iso (34.72%), 15:0 anteiso (33.72%), 16:0 iso (1.85%), 17:0 iso (7.11%), 17:0 anteiso (10.24%). The saturated fatty acids of the normal structure were also detected – 12:0 (0.36%), 14:0 (0.28%), 16:0 (1.30%). No 2- and 3-hydroxy acids and no cyclic fatty acids were detected in the fatty acid profile of B. subtilis ONU551 strain. Unsaturated fatty acid isomers – 15:1 w5c (1.85%), 16:1 w11c (1.21%), 16:1 w7c alcohol (1.08%), 17:1 iso w10c (3.18%), ∑17:1 iso I/anteiso B (2.57%) were shown to be the distinctive biomarkers of the B. subtilis ONU551 strain. According to the fatty acid profile analysis with MIDI Sherlock system, the studied strain was identified as Bacillus subtilis with high level of similarity index (0.563).

Keywords: , , ,


  1. Vasyurenko ZP, Frolov AF. Fatty acid composition of bacteria as a chemotaxonomic criterion. J Hyg Epidemiol Microbiol Immunol. 1986;30(3):287-93. PubMed
  2. Safronova LA, Zelenaa LB, Klochko VV, Avdeeva LV, Reva ON, Podgorskyi VS.  Geno- and phenotypic characteristic of Bacillus strains – components of endosporin. Mikrobiol Zhurn. 2012 Sep-Oct;74(5):55-65. (In Russian). PubMed
  3. The role of microorganisms in the functioning of living systems: fundamental problems and bioengineering applications. Eds. Vlasova VV, Degermendzhi AG, Kolchanova NA, Parmona VN, Repina VE. Novosibirsk: Izd-vo SO RAN, 2010; 28.
  4.  Oleskin AV, Kirovskaia TA. Population organization and communication in microorganism. Mikrobiologiia. 2006 Jul-Aug;75(4):440-5. (In Russian). PubMed
  5. Kaneda T. Fatty acids in the genus Bacillus. I. Iso- and anteiso-fatty acids as characteristic constituents of lipids in 10 species. J Bacteriol. 1967 Mar;93(3):894-903.  PubMed, PubMedCentral
  6. Diomandé SE, Nguyen-The C, Guinebretière MH, Broussolle V, Brillard J. Role of fatty acids in Bacillus environmental adaptation. Front Microbiol. 2015 Aug 5;6:813. PubMed, PubMedCentral, CrossRef
  7. Ivanytsia VO, Gorshkova OG, Korotaeva NV, Voliuvach OV, Gudzenko TV, Ostapchuk AM. Fatty acid composition of lipids of strain Bacillus sp. OЗ-5 isolated from oil-contaminated soil of the Zmiiny island. Microbiol Biotechnol. 2015;(4(32)):28-35.  CrossRef
  8. Zarnowski R, Ellis RJ, Lewicka T, Pietr SJ. Effect of age on the fatty acid composition of the Bacillus subtilis PO270 isolated from wheat rhizosphere. Pol J Microbiol. 2004;53(4):267-72. PubMed
  9. Grabova GYu, Dragovoz IV, Zelena LB, Ostapchuk AN, Avdeeva LV. Polyphasic taxonomic analysis of Bacillus sp. strain C6—the antagonist of phytopathogenic microorganisms. Tsitol Genet. 2016; 50(4):62-68.  CrossRef
  10. Patent of Ukraine No 129673. Method for microbiological purification of water from phenol and N-cetylpyridine bromide / Ivanytsia VO, Gudzenko TV, Gorshkova OG, Voliuvach OV, Konup IP, Belyaeva TO, Chaban M, Rakytska SI. Patent appl. No u201804337 20.04.2018. Publ. 12.11.2018.  Bull. No 21/2018.
  11. Kämpfer P. Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol. 1994;17(1):86-98. CrossRef
  12. MIS Operating Manual., September 2012.
  13. Bergey’s Manual of Systematic Bacteriology / Eds. Brenner DJ, Krieg NR, Staley JT, Garrity GM. N.Y.: Springer, 2005; Vol. 2.
  14. Ash C, Farrow JAE, Wallbanks S, Collins MD. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol. 1991;13(4): 202–206. CrossRef
  15. Heipieper HJ, Meulenbeld G, van Oirschot Q, de Bont J. Effect of Environmental Factors on the trans/cis Ratio of Unsaturated Fatty Acids in Pseudomonas putida S12. Appl Environ Microbiol. 1996 Aug;62(8):2773-7. PubMed, PubMedCentral
  16. Gorshkova OG, Korotaeva NV, Ostapchuk AM, Voliuvach OV, Gudzenko TV. Fatty Acids Composition of Microbacterium Genus Bacteria – Destructors of Oil Hydrocarbons. Mikrobiol Z. 2016 Sep-Oct;78(5):92-8. PubMed, CrossRef
  17. Gudzenko TV, Korotaeva NV, Voliuvach OV, Beliaeva TO, Gorshkova OG, Ivanytsia VO. Fatty acid composition of lipids of bacteria of the genus Pseudomonas, oxidizing petroleum products. Microbiol Biotechnol. 2014;(3(27)):31–40.  CrossRef
  18. Kaneda T. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev. 1977 Jun;41(2):391-418.  PubMed, PubMedCentral
  19. Gudzenko TV, Gorshkova OG, Korotaieva NV, Voliuvach OV, Ostapchuk AM,  Іvanytsia VO. Cellular fatty acid composition of Aeromonas genus – destructor of aromatic xenobiotics. Ukr Biochem J. 2019;91(1):86-91. CrossRef
  20. Gorshkova OG, Shtenikov MD, Korotaeva NV, Voliuvach OV. Features of fatty strength profile of strain Brevibacillus centrosporus f14 – destructor of phenolic compounds. Ukr Biochem J. 2018;90(3):134.
  21. Gorshkova OG, Voliuvach OV, Gudzenko TV, Chernyshova MO, Nester AA. Detection of markers in the FAT-acid profile of Bacillus subtilis ONU551 – destructor of disinfectants. Ukr Biochem J. 2018;90(Special Iss):63.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.