Ukr.Biochem.J. 2021; Volume 93, Issue 1, Jan-Feb, pp. 88-95


Comparative characteristic of lung cancer stem-like cells generated in vitro under different culture conditions

O. V. Skachkova1*, O. I. Gorbach1, M. V. Inomistova1,
L. V. Garmanchuk2, N. M. Khranovska1

1National Cancer Institute, Kyiv, Ukraine;
2ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Ukraine;

Received: 20 June 2020; Accepted: 17 December 2020

Cancer stem cells (CSCs) play an important role in resistance to cancer treatment and recurrence developing. The aim of this study was to obtain cell culture of MOR line non-small cell lung cancer cells enriched in CSCs and to investigate its functional and molecular-genetic properties. Tumor spheroids (TS) of MOR cell line were generated in vitro under normal adhesive (0.2% carboxymethyl cellulose, CMC) or low-adhesive (2% agarose) culture conditions. Lateral population of TS was evaluated by flow cytometry with the use of R-123 fluorescent dye, the index of R-123 exclusion was also assessed. Expression of CD44, ALDHA1, CD133, Sox2 and Nanog mRNA was determined with RT-qPCR. It was found that regardless of the culture conditions tumor spheroids form a lateral population characterized by an increased dye exclusion index. Expression levels of CD44, ALDHA1, CD133, Sox2 and Nanog mRNA in TS cells obtained under low-adhesive (2% agarose) conditions were significantly higher than in monolayer cells and cells obtained using 0.2% CMC. Thus, the proposed method of culturing in low-adhesive conditions allowed to enrich significantly tumor spheroids of MOR line in  cells with CSC properties.

Keywords: , , , , , , , ,


  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA , Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. PubMed, CrossRef
  2. Fedorenko ZP, Michailovich YY, Goulak LO, Gorokh YL, Ryzhov AY, Soumkina O V, Koutsenko LB. Cancer in Ukraine 2018–2019. Bull Nat Cancer Registry Ukraine. 2020; (21): 81 p.
  3. Lim E, Baldwin D, Beckles M, Duffy J, Entwisle J, Faivre-Finn C, Kerr K, Macfie A, McGuiga J, Padley S, Popat S, Screaton N, Snee M, Waller D, Warburton C, Win T. Guidelines on the radical management of patients with lung cancer. Thorax. 2010;65 Suppl 3:iii1-iii27.  PubMed, CrossRef
  4. Holohan C , Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714-726. PubMed, CrossRef
  5. Fulawka L, Donizy P, Halo A. Cancer stem cells – the current status of an old concept: literature review and clinical approaches. Biol Res. 2014;47(1):66. PubMed, PubMedCentral, CrossRef
  6. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275-291. PubMed, CrossRef
  7. Nassar D,  Blanpain C. Cancer Stem Cells: Basic Concepts and Therapeutic Implications. Annu Rev Pathol. 2016;11:47-76.  PubMed, CrossRef
  8. Itoh H, Nishikawa S, Haraguchi T, Arikawa Y, Hiyama M, Iseri T, Itoh Y, Nakaichi M, Taura Y, Tani K , Itamoto K. Identification of rhodamine 123-positive stem cell subpopulations in canine hepatocellular carcinoma cells. Biomed Rep. 2017;7(1):73-78. PubMed, PubMedCentral, CrossRef
  9. Atena M, Reza M, Mehran G. A Review on the Biology of Cancer Stem Cells. Stem Cell Discovery. 2014;4(4): 83-89. CrossRef
  10. Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, Lee YK, Kwon HY. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int. 2018;2018:5416923.  PubMed, PubMedCentral, CrossRef
  11. Gao J, Chen G, He H, Liu C, Xiong X, Li J, Wang J. Therapeutic Effects of Breviscapine in Cardiovascular Diseases: A Review. Front Pharmacol. 2017;8:289. PubMed, PubMedCentral, CrossRef
  12. Santini MT, Rainaldi G, Indovina PL. Multicellular tumour spheroids in radiation biology. Int J Radiat Biol. 1999;75(7):787-799. PubMed, CrossRef
  13. Golebiewska A, Brons NHC, Bjerkvig R, Niclou SP. Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell. 2011;8(2):136-147.  PubMed, CrossRef
  14. Lei Du L, Wang H, He L, Zhang J, Ni B, Wang X, Jin H, Cahuzac N, Mehrpour M, Lu Y, Chen Q. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14(21):6751-6760. PubMedCrossRef
  15. Yeung TM, Gandhi CS, Wilding JL, Muschel R, Bodmer WF. Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA. 2010;107(8):3722-3727. PubMed, PubMedCentral, CrossRef
  16. Leung EL, Fiscus RR, Tung JW, Tin VP, Cheng LC, Sihoe AD, Fink LM, Ma Y, Wong MP. Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One. 2010;5(11):e14062. PubMed, PubMedCentral, CrossRef
  17. Hardavella G, George R, Sethi T. Lung cancer stem cells-characteristics, phenotype. Transl Lung Cancer Res. 2016;5(3):272-279. PubMed, PubMedCentral, CrossRef
  18. Todaro M,  Francipane MG, Medema JP, Stassi G. Colon cancer stem cells: promise of targeted therapy. Gastroenterology. 2010;138(6):2151-2162. PubMed, CrossRef
  19. Kozovska Z, Gabrisova V, Kucerova L. Colon cancer: cancer stem cells markers, drug resistance and treatment. Biomed Pharmacother. 2014;68(8):911-916. PubMed, CrossRef
  20. Kang EJ, Jung H, Woo OH, Park KH, Woo SU, Yang DS, Kim AR, Lee JB, Kim YH, Kim JS, Seo JH. Association of aldehyde dehydrogenase 1 expression and biologically aggressive features in breast cancer. Neoplasma. 2014;61(3):352-362. PubMed, CrossRef
  21. Sarkar A, Konrad Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 2013;12(1):15-30. PubMed, PubMedCentral, CrossRef
  22. Toschi L, Finocchiaro G, Nguyen TT, Skokan MC, Giordano L, Gianoncelli L, Perrino M, Siracusano L,  Di Tommaso L, Infante M, Alloisio M, Roncalli M, Scorsetti M, Jänne PA, Santoro A, Varella-Garcia M. Increased SOX2 gene copy number is associated with FGFR1 and PIK3CA gene gain in non-small cell lung cancer and predicts improved survival in early stage disease. PLoS One. 2014;9(4):e95303. PubMed, PubMedCentral, CrossRef
  23. Saigusa S, Tanaka K, Toiyama Y, Yokoe T, Okugawa Y, Ioue Y, Miki C, Kusunoki M. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol. 2009;16(12):3488-3498.  PubMed, CrossRef
  24. Lu X, Mazur SJ, Lin T, Appella E, Xu Y. The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. Oncogene. 2014;33(20):2655-2664. PubMed, PubMedCentral, CrossRef
  25. Wefers C, Schreibelt G, Massuger LFAG, de Vries IJM, Torensma R. Immune Curbing of Cancer Stem Cells by CTLs Directed to NANOG. Front Immunol. 2018;9:1412. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.