Ukr.Biochem.J. 2021; Volume 93, Issue 2, Mar-Apr, pp. 24-37

doi: https://doi.org/10.15407/ubj93.02.024

Locally delivered lovastatin-containing chitosan nanoparticles promote bone regeneration in rats

O. O. Shevchuk1*, Ya. V. Panasiuk2, M. M. Korda3

1Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine;
2Department of Functional and Laboratory Diagnostics, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine;
3Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine;
*e-mail: shevchukoo@tdmu.edu.ua

Received: 24 February 2021; Accepted: 23 April 2021

Hypolipidemic statins can stimulate osteoregeneration. However, such effects are observed only after administration methods that are unacceptable for patients (prolonged infusions or huge oral doses). The aim of our research was to compare the osteoregeneration effects of lovastatin administered alone as a common pharmaceutical formulation and as lovastatin-containing chitosan nanoparticles (LCCN) in a drill-hole model of bone damage in rats. White inbred rats were randomly divided into four groups: group 1 – intact rats; group 2 – rats with bone defect without treatment (control group); group 3 – rats with bone defect, which received common pharmaceutical formulation of lovastatin at doses of 0.1, 1.0 and 5.0 mg/kg; group 4 – rats, which received 0.1 mg/kg lovastatin in the form of lovastatin-containing chitosan nanoparticles (LCCN). A dental drill of 2.0 mm in diameter was used to form the tibial bone defect. Rats were sacrificed 3, 7, 14 and 28 days after bone defect formation. Calcium (Ca), phosphorus (P) and sialic acid concentrations, alkaline and acidic phosphatase activities, mineralization index, and collagenolytic activity were measured in blood serum. Computed tomography (CT) and histological study were used to estimate the regenerative processes in the bone. It was found that therapeutic doses of lovastatin (0.1 and 1.0 mg/kg) are ineffective for bone defect healing. Only high doses of lovastatin (5.0 mg/kg) promote osteoregeneration. LCCN were more efficient compared to lovastatin alone, as confirmed by CT examination of bone defects and significant changes of Ca, P, and sialic acid concentrations, alkaline and acidic phosphatase activities, mineralization index, and collagenolytic activity. Lovastatin-containing chitosan nanoparticles effectively enhance fracture healing in used preclinical model. This finding suggests the possibility that a similar approach may be effective in hastening fracture repair in humans.

Keywords: , , ,


References:

  1. Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 2018;233(4):2937-2948. PubMed, CrossRef
  2. Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45-54. PubMed, PubMedCentral, CrossRef
  3. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551-555. PubMed, PubMedCentral, CrossRef
  4. Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 2018;185:240-275.
    PubMed, PubMedCentral, CrossRef
  5. Martin V,  Bettencourt A. Bone regeneration: Biomaterials as local delivery systems with improved osteoinductive properties. Mater Sci Eng C Mater Biol Appl. 2018;82:363-371. PubMed, CrossRef
  6. Conway JD, Shabtai L, Bauernschub A, Specht SC. BMP-7 versus BMP-2 for the treatment of long bone nonunion. Orthopedics. 2014;37(12):e1049-e1057. PubMed, CrossRef
  7. von Rüden C, Morgenstern M, Hierholzer C, Hackl S, Gradinger FL, Woltmann A, Bühren V, Jan Friederichs J. The missing effect of human recombinant Bone Morphogenetic Proteins BMP-2 and BMP-7 in surgical treatment of aseptic forearm nonunion. Injury. 2016;47(4):919-924. PubMed, CrossRef
  8. Gutierrez GE, Edwards JR, Garrett IR, Nyman JS, McCluskey B, Rossini G, Flores A, Neidre DB, Mundy GR. Transdermal lovastatin enhances fracture repair in rats. J Bone Miner Res. 2008;23(11):1722-1730. PubMed, PubMedCentral, CrossRef
  9. Ohnaka K, Shimod S, Nawata H, Shimokawa H, Kaibuchi K, Iwamoto Y, Takayanagi R. Pitavastatin enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts. Biochem Biophys Res Commun. 2001;287(2):337-342. PubMed, CrossRef
  10. Yamashita M, Otsuka F, Mukai T, Otani H, Inagaki K, Miyoshi T, Goto J, Yamamura M, Makino H. Simvastatin antagonizes tumor necrosis factor-alpha inhibition of bone morphogenetic proteins-2-induced osteoblast differentiation by regulating Smad signaling and Ras/Rho-mitogen-activated protein kinase pathway. J Endocrinol. 2008;196(3):601-613. PubMed, CrossRef
  11. Shah SR, Werlang CA, Kasper FK, Mikos AG. Novel applications of statins for bone regeneration. Natl Sci Rev. 2015;2(1):85-99. pm id=”26543666″], PubMedCentral, CrossRef
  12. Horiuchi N, Maeda T. Statins and bone metabolism. Oral Dis. 2006;12(2):85-101. PubMed, CrossRef
  13. Ibrahim N, Mohamed N, Shuid AN. Update on statins: hope for osteoporotic fracture healing treatment. Curr Drug Targets. 2013;14(13):1524-1532. PubMed, CrossRef
  14. Hagihara M, Endo M, Hata K, Higuchi C, Takaoka K, Yoshikawa H, Yamashita T. Neogenin, a receptor for bone morphogenetic proteins. J Biol Chem. 2011;286(7):5157-5165. PubMed, PubMedCentral, CrossRef
  15. Ibrahim N, Mohamed N, Soelaiman IN,  Shuid AN. The Effects of Targeted Deliveries of Lovastatin and Tocotrienol on Ossification-Related Gene Expressions in Fracture Healing in an Osteoporosis Rat Model. Int J Environ Res Public Health. 201516;12(10):12958-12976. PubMed, PubMedCentral, CrossRef
  16. Gutierrez GE, Lalka D, Garrett IR, Rossini G, Mundy GR. Transdermal application of lovastatin to rats causes profound increases in bone formation and plasma concentrations. Osteoporos Int. 2006;17(7):1033-1042. PubMedCrossRef
  17. Jadhav SB, Narayana Murthy PS, Singh MM, Jain GK. Distribution of lovastatin to bone and its effect on bone turnover in rats. J Pharm Pharmacol. 2006;58(11):1451-1458. PubMed, CrossRef
  18. Perazella MA, Izzedine H. New drug toxicities in the onco-nephrology world. Kidney Int. 2015;87(5):909-917. PubMed, CrossRef
  19. 19. Shahrezaee M, Oryan A, Bastami F, Hosseinpour S, Shahrezaee MH, Kamali A. Comparative impact of systemic delivery of atorvastatin, simvastatin, and lovastatin on bone mineral density of the ovariectomized rats. Endocrine. 2018;60(1):138-150. PubMed, CrossRef
  20. Dodiya H, Kale V, Goswami S, Sundar R, Jain M. Evaluation of adverse effects of lisinopril and rosuvastatin on hematological and biochemical analytes in wistar rats. Toxicol Int. 2013;20(2):170-176. PubMed, PubMedCentral, CrossRef
  21. Encarnação IC, Xavier CC, Bobinski F, dos Santos AR, Corrêa M, de Freitas SF, Aragonez A, Goldfeder EM, Cordeiro MM. Analysis of bone repair and inflammatory process caused by simvastatin combined with PLGA+HA+βTCP scaffold. Implant Dent. 2016;25(1):140-148. PubMed, CrossRef
  22. Wu Y, Yang W, Wang C, Hu J, Fu S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm. 2005;295(1-2):235-245. PubMed, CrossRef
  23. Saeed RM, Dmour I, Taha MO. Stable chitosan-based nanoparticles using polyphosphoric acid or hexametaphosphate for tandem ionotropic/covalent crosslinking and subsequent investigation as novel vehicles for drug delivery. Front Bioeng Biotechnol. 2020;8:4. PubMed, PubMedCentral, CrossRef
  24. Li SW, Song HP, Leng Y. Rapid determination of lovastatin in the fermentation broth of Aspergillus terreus using dual-wavelength UV spectrophotometry. Pharm Biol. 2014;52(1):129-135. PubMed, CrossRef
  25. Laçin N, İzol BS, Özkorkmaz EG, Deveci B, Tuncer MC. The effect of graft application and simvastatin treatment on tibial bone defect in rats. A histological and immunohistochemical study. Acta Cir Bras. 2019;34(4):e201900408. PubMed, PubMedCentral, CrossRef
  26. Wei L, Yu D, Wang M, Deng L, Wu G, Liu Y. Dose effects of slow-released bone morphogenetic protein-2 functionalized β-tricalcium phosphate in repairing critical-sized bone defects. Tissue Eng Part A. 2020;26(3-4):120-129. PubMed, CrossRef
  27. Toker H, Ozdemir H, Ozer H, Eren K. Alendronate enhances osseous healing in a rat calvarial defect model. Arch Oral Biol. 2012;57(11):1545-1550. PubMed, CrossRef
  28. Sharaev PN, Pishkov VN, Zvorygina NG, Shinkareva LF, Napol’skikh VM. Determination of the collagenolytic activity of blood plasma. Lab Delo. 1987;(1):60-62. (In Russian). PubMed
  29. Kolb VH, Kamyshnikov VS. Clinical Biochemistry. Minsk: Belarus, 1976. 311 p.
  30. Sharaev PN, Pishkov VN, Solov’ev NI, Shirokova TIu, Solov’eva TV. Method of determining glycosaminoglycans in biological fluids. Lab Delo. 1987;(5):330-332.(In Russian). PubMed
  31. Kalahasthi R, Barman T, Shankara Bagepally BS. Assessment of bone turnover biomarkers in lead-battery workers with long-term exposure to lead. Int J Occup Environ Med. 2020;11(3):140-147. PubMed, PubMedCentral, CrossRef
  32. Shcherba V, Kyryliv M, Bekus I, Krynytska I , Marushchak M, Korda M. A comparative study of connective tissue metabolism indices in experimental comorbidity-free periodontitis and periodontitis combined with thyroid dysfunction. J Med Life. 2020;13(2):219-224. PubMed, PubMedCentral
  33. Williams C, Sapra A. Osteoporosis Markers, http://www.ncbi.nlm.nih.gov/pubmed/32644732 (2020, accessed 14 February 2021).
  34. Lisowska B, Kosson D, Domaracka K. Positives and negatives of nonsteroidal anti-inflammatory drugs in bone healing: the effects of these drugs on bone repair. Drug Des Devel Ther. 2018;12:1809-1814. PubMed, PubMedCentral, CrossRef
  35. Sathyendra V, Darowish M. Basic science of bone healing. Hand Clin. 2013;29(4):473-481. PubMed, CrossRef
  36. Hernandez RK, Do TP, Critchlow CW, Dent RE, Jick SS. Patient-related risk factors for fracture-healing complications in the United Kingdom General Practice Research Database. Acta Orthop. 2012;83(6):653-660. PubMed, PubMedCentral, CrossRef
  37. Li Y, Zhang Z, Zhang Z. Porous chitosan/nano-hydroxyapatite composite scaffolds incorporating simvastatin-loaded PLGA microspheres for bone repair. Cells Tissues Organs. 2018;205(1):20-31. PubMed, CrossRef
  38. Tahamtan S, Shirban F, Bagherniya M, Johnston TP, Sahebkar A. The effects of statins on dental and oral health: a review of preclinical and clinical studies. J Transl Med. 2020;18(1):155. PubMed, PubMedCentral, CrossRef
  39. Wu X, Pricev, Guy RH. Disposition of nanoparticles and an associated lipophilic permeant following topical application to the skin. Mol Pharm. 2009;6(5):1441-1448. PubMed, CrossRef
  40. Hussain Z, Katas H, Mohd Amin MC, umolosasi E, Buang F, Sahudin S. Self-assembled polymeric nanoparticles for percutaneous co-delivery of hydrocortisone/hydroxytyrosol: an ex vivo and in vivo study using an NC/Nga mouse model. Int J Pharm. 2013;444(1-2):109-119. PubMed, CrossRef
  41. He W, Guo X, Zhang M. Transdermal permeation enhancement of N-trimethyl chitosan for testosterone. Int J Pharm. 2008;356(1-2):82-87. PubMed, CrossRef
  42. Abinaya B, Prasith TP, Ashwin B, Viji Chandran S, Selvamurugan N. Chitosan in Surface Modification for Bone Tissue Engineering Applications. Biotechnol J. 2019;14(12):e1900171.PubMed, CrossRef
  43. Garrett IR, Gutierre GE, Rossini G, Nyman J, McCluskey B, Flores A, Mundy GR. Locally delivered lovastatin nanoparticles enhance fracture healing in rats. J Orthop Res. 2007;25(10):1351-1357.  PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.