Ukr.Biochem.J. 2021; Volume 93, Issue 4, Jul-Aug, pp. 55-65

doi: doi:

Expression of antioxidant enzymes genes in the liver and cardiac tissues of rats under L-carnitine administration and high-intensity interval exercise training

B. Shahouzehi1,2, Y. Masoumi-Ardakani3, S. Aminizadeh3, H. Nasri2*

1Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran;
2Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran;
3Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran;
Received: 29 September 2020; Accepted: 07 July 2021

Reactive oxygen and nitrogen species are produced in the body both in normal and pathological processes and can alter cell redox and affect cell functions. Exercise training is able to modulate oxidant/antioxidants balance. In this study, we aimed to evaluate expression of antioxidant enzymes genes in the liver and cardiac tissues of rats that performed high-intensity interval training (HIIT) and received L-carnitine (LCAR). Thirty-two male Wistar rats were were randomly assigned into 4 groups (n = 8) as follows: 1. Untreated control; 2. The group that received LCAR (200 mg/kg/day i.p.); 3. The group that performed HIIT on a readmill (5 days/week for 4 weeks); 4. The group  that received LCAR and performed HIIT. At the end of the study, liver and cardiac tissues were excised and used to quantify glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT) and NF-κB genes expression by real-time PCR. It was found that both in LCAR and  HIIT groups GPX, SOD and NF-κB (P < 0.01) expression in cardiac and liver tissues was  significantly increased compared to the indices in the control group. In LCAR-HIIT group SOD and NF-κB expression in the liver was significantly increased compared to the group that received LCAR only (P = 0.046).  Our results showed that LCAR supplementation is useful to improve oxidative status in cardiac and liver tissues of rat during exercise training.

Keywords: , , , ,


  1. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47-95.  PubMed, CrossRef
  2. Burdon RH, Rice-Evans C. Free radicals and the regulation of mammalian cell proliferation. Free Radic Res Commun. 1989;6(6):345-358. PubMed, CrossRef
  3. Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006;72(11):1493-1505.  PubMed, CrossRef
  4. Bisbal C, Lambert K, Avignon A. Antioxidants and glucose metabolism disorders. Curr Opin Clin Nutr Metab Care. 2010;13(4):439-446. PubMed, CrossRef
  5. Jones DP. Redefining oxidative stress. Antioxid Redox Signal. 2006;8(9-10):1865-1879. PubMed, CrossRef
  6. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21(1):103-115. PubMed, PubMedCentral, CrossRef
  7. Zwetsloot KA, John CS, Lawrence MM, Battista RA, Shanely RA. High-intensity interval training induces a modest systemic inflammatory response in active, young men. J Inflamm Res. 2014;7:9-17. PubMed, PubMedCentral, CrossRef
  8. Coyle EF. Very intense exercise-training is extremely potent and time efficient: a reminder. J Appl Physiol. 2005;98(6):1983-1984. PubMed, CrossRef
  9. Costa KB, Magalhães SM, Aguiar PF, Ottone VO, Tossige-Gomes R, Magalhães FC, Amorim FT, Rocha-Vieira E. Modification of Blood Redox Homeostasis by High-Intensity Interval Training. Reactive Oxygen Species. 2018;5(13):56-67.  CrossRef
  10. Ashton T, Rowlands CC, Jones E, Young IS, Jackson SK, Davies B, Peters JR. Electron spin resonance spectroscopic detection of oxygen-centred radicals in human serum following exhaustive. Eur J Appl Physiol Occup Physiol. 1998;77(6):498-502.  PubMed, CrossRef
  11. Tossige-Gomes R, Costa KB, Ottone Vde O, Magalhães Fde C, Amorim FT, Rocha-Vieira E. Lymphocyte Redox Imbalance and Reduced Proliferation after a Single Session of High Intensity Interval Exercise. PLoS One. 2016;11(4):e0153647. PubMed, PubMedCentral, CrossRef
  12. Cleto LS, Oleto AF, Sousa LP, Barreto TO, Cruz JS, Penaforte CL, Magalhães JC, Sousa-Franco J, Pinto KMC, Campi-Azevedo AC, Rocha-Vieira E. Plasma cytokine response, lipid peroxidation and NF-kB activation in skeletal muscle following maximum progressive swimming. Braz J Med Biol Res. 2011;44(6):546-552. PubMed, CrossRef
  13. Hudson MB, Hosick PA, McCaulley GO, Schrieber L, Wrieden J, McAnulty SR, Triplett NT, McBride JM, Quindry JC. The effect of resistance exercise on humoral markers of oxidative stress. Med Sci Sports Exerc. 2008;40(3):542-548. PubMed, CrossRef
  14. Barreto TO, Cleto LS, Gioda CR, Silva RS, Campi-Azevedo AC, de Sousa-Franco J, de Magalhães JC, Penaforte CL, Pinto KMC, Cruz Jdos S, Rocha-Vieira E. Swim training does not protect mice from skeletal muscle oxidative damage following a maximum exercise test. Eur J Appl Physiol. 2012;112(7):2523-2530. PubMed, CrossRef
  15. Ugras AF. Effect of high intensity interval training on elite athletes’ antioxidant status. Sci Sport. 2013;28(5):253-259.  CrossRef
  16. Emami AM, Homaei HM, Azarbayejani MA. Effects of High Intensity Interval Training and Curcumin Supplement on Glutathione Peroxidase (GPX) Activity and Malondialdehyde (MDA) Concentration of the Liver in STZ Induced Diabetic Rats. Iranian J Diab Obes. 2016;8(3):129-134.
  17. Ramos-Filho D, Chicaybam G, de-Souza-Ferreira E, Martinez CG, Kurtenbach E, Casimiro-Lopes G, Galina A. High Intensity Interval Training (HIIT) Induces Specific Changes in Respiration and Electron Leakage in the Mitochondria of Different Rat Skeletal Muscles. PLoS One. 2015;10(6):e0131766. PubMed, PubMedCentral, CrossRef
  18. Cha YS. Effects of L-carnitine on obesity, diabetes, and as an ergogenic aid. Asia Pac J Clin Nutr. 2008;17(Suppl 1):306-308. PubMed
  19. Eskandari HG, Cimen MY, Tamer L, Kanik A, Atik U. Short term effects of L-carnitine on serum lipids in STZ-induced diabetic rats. Diabetes Res Clin Pract. 2004;66(2):129-132. PubMed, CrossRef
  20. Terruzzi I, Montesano A, Senesi P, Villa I, Ferraretto A, Bottani M, Vacante F, Spinello A, Bolamperti S, Luzi L, Rubinacci A. L-Carnitine Reduces Oxidative Stress and Promotes Cells Differentiation and Bone Matrix Proteins Expression in Human Osteoblast-Like Cells. Biomed Res Int. 2019;2019:5678548. PubMed, PubMedCentral, CrossRef
  21. Vacante F, Senesi P, Montesano A, Frigerio A, Luzi L, Terruzzi I. L-Carnitine: An Antioxidant Remedy for the Survival of Cardiomyocytes under Hyperglycemic Condition. J Diabetes Res. 2018;2018:4028297. PubMed, PubMedCentral, CrossRef
  22. Hussein SA, Abd El-Hamid OM, Hemdan HS. Protective Effect of L-carnitine on Metabolic Disorders, Oxidative Stress, Antioxidant Status and Inflammation in a Rat Model of Insulin Resistance. Int J Biol Chem. 2014;8(1):21-36. CrossRef
  23. Parandak K, Arazi H, Khoshkhahesh F, Nakhostin-Roohi B. The effect of two-week L-carnitine supplementation on exercise -induced oxidative stress and muscle damage. Asian J Sports Med. 2014;5(2):123-128. PubMed, PubMedCentral
  24. Lee JK, Lee JS, Park H, Cha YS, Yoon CS, Kim CK. Effect of L-carnitine supplementation and aerobic training on FABPc content and beta-HAD activity in human skeletal muscle. Eur J Appl Physiol. 2007;99(2):193-199. PubMed, CrossRef
  25. Masoumi-Ardakani Y, Aminizadeh S, Fallah H, Shahouzehi B. L-Carnitine different doses affect serum and pancreas tissue Antioxidative defense and histopathology in STZ-induced diabetic rats. Biologia. 2020;75(9):1415–1423. CrossRef
  26. Masoumi-Ardakani Y, Fallah H, Shahouzehi B. Carnitine effects on serum and pancreas inflammatory response in diabetic rats. Ukr Biochem J. 2019;91(6):59-66. CrossRef
  27. Sobhani V, Mirdar S, Arabzadeh E, Hamidian G, Mohammadi F. High-intensity interval training-induced inflammation and airway narrowing of the lung parenchyma in male maturing rats. Comp Clin Pathol. 2018;27(3):577-582. CrossRef
  28. Quijano C, Trujillo M , Castro L , Trostchansky A. Interplay between oxidant species and energy metabolism. Redox Biol. 2016;8:28-42. PubMed, PubMedCentral, CrossRef
  29. Lingappan K. NF-κB in Oxidative Stress. Curr Opin Toxicol. 2018;7:81-86. PubMed, PubMedCentral, CrossRef
  30. Poblete Aro CE, Russell Guzmán JA, Soto Muñoz ME, Villegas González BE. Effects of high intensity interval training versus moderate intensity continuous training on the reduction of oxidative stress in type 2 diabetic adult patients: CAT. Medwave. 2015;15(7):e6212. PubMed, CrossRef
  31. Bermejo FJ, Olcina O, Martínez I, Timón R. Effects of a HIIT protocol including functional exercises on performance and body composition. Arch Med Deporte. 2018;35(6):386-391.
  32. Groussard C, Maillard F, Vazeille E, Barnich N, Sirvent P, Otero YF, Combaret L, Madeuf E, Sourdrille A , Delcros G, Etienne M, Teixeira A, Sauvanet P, Pialoux V, Boisseau N. Tissue-Specific Oxidative Stress Modulation by Exercise: A Comparison between MICT and HIIT in an Obese Rat Model. Oxid Med Cell Longev. 2019;2019:1965364. PubMed, PubMedCentral, CrossRef
  33. Vargas-Mendoza N, Morales-González Á, Madrigal-Santillán EO, Madrigal-Bujaidar E, Álvarez-González I, García-Melo LF, Anguiano-Robledo L, Fregoso-Aguilar T, Morales-Gonzalez JA. Antioxidant and Adaptative Response Mediated by Nrf2 during Physical Exercise. Antioxidants (Basel). 2019;8(6):196. PubMed, PubMedCentral, CrossRef
  34. Tucker PS, Briskey DR, Scanlan AT, Coombes JS, Dalbo VJ. High intensity interval training favourably affects antioxidant and inflammation mRNA expression in early-stage chronic kidney disease. Free Radic Biol Med. 2015;89:466-472. PubMed, CrossRef
  35. Henríquez-Olguín C, Renani LB, Arab-Ceschia L, Raun SH, Bhatia A, Li Z, Knudsen JR, Holmdahl R, Jensen TE. Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2. Redox Biol. 2019;24:101188. PubMed, PubMedCentral, CrossRef
  36. Ishikawa H, Takaki A, Tsuzaki R, Yasunaka T, Koike K, Shimomura Y, Seki H, Matsushita H, Miyake Y, Ikeda F, Shiraha H, Nouso K, Yamamoto K. L-carnitine prevents progression of non-alcoholic steatohepatitis in a mouse model with upregulation of mitochondrial pathway. PLoS One. 2014;9(7):e100627. PubMed, PubMedCentral, CrossRef
  37. Nurani Pilehrud M, Nameni F, Ebadi Ghahremani M. Serum anti-oxidation enzymes response to L-carnitine supplementation females basketball players.  Int J Bio-Inorg Hybr Nanomater. 2016;5(3):213-221.
  38. Luedde T, Schwabe RF. NF-κB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8(2):108-118. PubMed, PubMedCentral, CrossRef
  39. Pourheydar B, Biabanghard A, Azari R, Khalaji N, Chodari L. Exercise improves aging-related decreased angiogenesis through modulating VEGF-A, TSP-1 and p-NF-Ƙb protein levels in myocardiocytes. J Cardiovasc Thorac Res. 2020;12(2):129-135. PubMed, PubMedCentral, CrossRef
  40. Shahedi V, Soori R. The Effect of Endurance Training and Purslane Seed Consumption on NF-kB and CRP in the Heart Tissue of Rats Exposed to Oxidative Damage Induced by H2O2. J Arch Mil Med. 2019; 7(1-2):e90524. CrossRef
  41. Liu HW, Chang SJ. Moderate Exercise Suppresses NF-κB Signaling and Activates the SIRT1-AMPK-PGC1α Axis to Attenuate Muscle Loss in Diabetic db/db Mice. Front Physiol. 2018;9:636. PubMed, PubMedCentral, CrossRef
  42. Ji LL, Gomez-Cabrera MC, Steinhafel N, Vina J.Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. FASEB J. 2004;18(13):1499-1506. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.