Ukr.Biochem.J. 2021; Volume 93, Issue 5, Sep-Oct, pp. 102-110

doi: https://doi.org/10.15407/ubj93.05.102

Green synthesis of silver nanoparticles using aqueous extract of hot chili pepper fruits and its antimicrobial activity against Pseudomonas aeruginosa

O. E. Smirnov1,2, V. Ye. Kalynovskyi1, Yu. M. Yumyna1, P. P. Zelena1,
M. A. Skoryk3, V. M. Dzhagan4, N. Yu. Taran1

1ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Ukraine;
2Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv;
3G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kyiv;
4V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv;
e-mail: plantaphys@gmail.com

Received: 09 April 2021; Accepted: 22 September 2021

Green synthesis of different nanoparticles using the plants aqueous extracts has several advantages over other methods due to the environmentally favorable nature of plants. Moreover, such approach is also cost effective. This work describes the biosynthesis of silver nanoparticles (Ag-NPs) with the use of the aqueous extract of dry pericarps of hot chili peppers (Capsicum sp. cv. Teja (S-17) and cv. Carolina Reaper) with different levels of pungency and their antibacterial effect on the antibiotic resistant Pseudomonas aeruginosa. Phytochemical screening of pericarp tissues showed great distinction in contents of phenolic compounds and capsaicinoids as potential reducing agents wich correlated with total antiradical activity as analyzed by reduction of DPPH radicals. The biosynthesized Ag-NPs were characterized by UV-vis spectrophotometry and scanning electron microscopy (SEM). The average size of the nanoparticles in both samples was less than 25 nm. Іnitial concentration of both samples of Ag-NPs inhibited P. aeruginosa growth with equal efficiency.

Keywords: , , ,


References:

  1. Stoica AE, Chircov C, Grumezescu AM. Nanomaterials for Wound Dressings: An Up-to-Date Overview. Molecules. 2020;25(11):2699.   PubMed, PubMedCentral, CrossRef
  2. Salomoni R, Léo P, Montemor AF, Rinaldi BG, Rodrigues MFA. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl. 2017;10:115-121. PubMed, PubMedCentral, CrossRef
  3. Lee SH, Jun BH. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci. 2019;20(4):865. PubMed, PubMedCentral, CrossRef
  4. de Jesús Ruíz-Baltazar Á., Reyes-López SY, Larrañaga D, Estévez M, Pérez R. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results Phys. 2017; 7: 2639-2643.  CrossRef
  5. Borovaya M, Naumenko A, Horiunova I, Plokhovska S, Blume Y, Yemets A. “Green” synthesis of Ag2S nanoparticles, study of their properties and bioimaging applications. Appl Nanosci. 2020;10(12):4931-4940. CrossRef
  6. Prasher P, Singh M, Mudila H. Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges. 3 Biotech. 2018;8(10):411. PubMed, PubMedCentral, CrossRef
  7. Babenko LM, Smirnov OE, Romanenko KO, Trunova OK, Kosakivska IV. Phenolic compounds in plants: functions and biogenesis. Ukr Biochem J. 2019;91(3):5-18. CrossRef
  8. Hamed M, Kalita D, Bartolo ME, Jayanty SS. Capsaicinoids, Polyphenols and Antioxidant Activities of Capsicum annuum: Comparative Study of the Effect of Ripening Stage and Cooking Methods. Antioxidants (Basel). 2019;8(9):364. PubMed, PubMedCentral, CrossRef
  9. Burkowska-But A, Sionkowski G, Walczak M. Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water. J Environ Sci (China). 2014;26(3):542-549.  PubMed, CrossRef
  10. Salari S, Esmaeilzadeh Bahabadi S, Samzadeh-Kermani A, Yosefzaei F. In-vitro Evaluation of Antioxidant and Antibacterial Potential of GreenSynthesized Silver Nanoparticles Using Prosopis farcta Fruit Extract. Iran J Pharm Res. 2019;18(1):430-455. PubMed, PubMedCentral
  11. Myint KZ, Yu Q, Xia Y, Qing J, Zhu S, Fang Y, Shen J. Bioavailability and antioxidant activity of nanotechnology-based botanic antioxidants. J Food Sci. 2021;86(2):284-292. PubMedCrossRef
  12. Smirnov OE, Kosyan AM, Pryimak YuV, Kosyk OI, Taran NYu. Organo-specific accumulation of phenolic compounds in a buckwheat seedlings under aluminium-acid stress. Ukr Biochem J. 2021;93(1):75-81. CrossRef
  13. Ryu WK, Kim HW, Kim GD, Rhee HI. Rapid determination of capsaicinoids by colorimetric method. J Food Drug Anal. 2017;25(4):798-803. PubMedCrossRef
  14. Armstrong JM. The molar extinction coefficient of 2,6-dichlororophenol indophenol. Biochim Biophys Acta. 1964;86:194-197. PubMedCrossRef
  15. Rahman MM, Islam MB, Biswas M, Khurshid Alam AHM. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes. 2015;8:621. PubMed, PubMedCentral, CrossRef
  16. Reda M, Ashames A, Edis Z, Bloukh S, Bhandare R, Abu Sara H. Green Synthesis of Potent Antimicrobial Silver Nanoparticles Using Different Plant Extracts and Their Mixtures. Processes. 2019;7(8):510.   CrossRef
  17. Fiebelkorn KR, Crawford SA, McElmeel ML, Jorgensen JH. Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J Clin Microbiol. 2003;41(10):4740-4744.  PubMed, PubMedCentral, CrossRef
  18. Chinn MS, Sharma-Shivappa RR, Cotter JL. Solvent extraction and quantification of capsaicinoids from Capsicum chinense. Food Bioprod Process. 2011;89(4):340-345.  CrossRef
  19. Dailey A, Vuong QV. Effect of extraction solvents on recovery of bioactive compounds and antioxidant properties from macadamia (Macadamia tetraphylla) skin waste. Cogent Food Agric. 2015;1(1):1115646. CrossRef
  20. Oseguera-Galindo DO, Oceguera-Contreras E, Pozas-Zepeda D. Silver nanoparticles synthesis using biomolecules of habanero pepper (Capsicum chinense Jacq.) as a reducing agent. J Nanophotonics. 2020;14(3):036012.  CrossRef
  21. Shankar T, Karthiga P, Swarnalatha K, Rajkumar K. Green synthesis of silver nanoparticles using Capsicum frutescence and its intensified activity against E. coli. Res Effic Technol. 2017; 3(3): 303-308. CrossRef
  22. Kumar AS, Madhu G, John E, Kuttinarayanan SV, Nair SK. Optical and antimicrobial properties of silver nanoparticles synthesized via green route using honey. Green Process Synth. 2020; 9(1): 268-274. CrossRef
  23. Kharabi Masooleh A, Ahmadikhah A, Saidi A. Green synthesis of stable silver nanoparticles by the main reduction component of green tea (Camellia sinensis L.). IET Nanobiotechnol. 2019;13(2):183-188.  PubMedCrossRef
  24. Hamouda RA, Hussein MH, Abo-elmagd RA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep. 2019;9(1):13071. PubMed, PubMedCentral, CrossRef
  25. Varghese Alex K, Tamil Pavai P, Rugmini R, Shiva Prasad M, Kamakshi K, Sekhar KC. Green Synthesized Ag Nanoparticles for Bio-Sensing and Photocatalytic Applications. ACS Omega. 2020;5(22):13123-13129. PubMed, PubMedCentral, CrossRef
  26. Chung IM, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications. Nanoscale Res Lett. 2016;11(1):40. PubMed, PubMedCentral, CrossRef
  27. Maddinedi SB, Mandal BK, Maddili SK. Biofabrication of size controllable silver nanoparticles – A green approach. J Photochem Photobiol B. 2017;167:236-241. PubMedCrossRef
  28. Babu SA. Prabu HG. Synthesis of AgNPs Using the Extract of Calotropis Procera Flower at Room Temperature. Mater Lett. 2011; 65(11): 1675-1677. CrossRef
  29. Yayan J, Ghebremedhin B, Rasche K. Antibiotic Resistance of Pseudomonas aeruginosa in Pneumonia at a Single University Hospital Center in Germany over a 10-Year Period. PLoS One. 2015;10(10):e0139836. PubMed, PubMedCentral, CrossRef
  30. Heimesaat MM, Escher U, Grunau A, Kühl AA, Bereswill S. Multidrug-Resistant Pseudomonas aeruginosa Accelerate Intestinal, Extra-Intestinal, and Systemic Inflammatory Responses in Human Microbiota-Associated Mice With Subacute Ileitis. Front Immunol. 2019;10:49.  PubMed, PubMedCentral, CrossRef
  31. Javan Bakht Dalir S, Djahaniani H, Nabati F, Hekmati M. Characterization and the evaluation of antimicrobial activities of silver nanoparticles biosynthesized from Carya illinoinensis leaf extract. Heliyon. 2020;6(3):e03624. PubMed, PubMedCentral, CrossRef
  32. Kvitek L, Panacek A, Soukupova J, Kolář M, Večeřová R, Prucek R, Holecová AM, Zbořil R. Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). J Phys Chem C. 2008;112:5825-5834. CrossRef
  33. Tamboli DP, Lee DS. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. J Hazard Mater. 2013;260:878-884. PubMed, CrossRef
  34. Zhang XF, Shen W, Gurunathan S. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model. Int J Mol Sci. 2016;17(10):1603.  PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.