Ukr.Biochem.J. 2021; Volume 93, Issue 5, Sep-Oct, pp. 31-42

doi: https://doi.org/10.15407/ubj93.05.031

Overall hemostasis potential of blood plasma and its connection to molecular markers of the hemostasis system in patients with stenosis of coronary artery

N. V. Storozhuk1, L. V. Pyrogova2, Т. М. Chernyshenko2,
O. P. Kostyuchenko2, T. M. Platonova2, O. B. Storozhuk1,
B. G. Storozhuk1, R. Yu. Marunich2,
G. K. Bereznytsky2, E. M. Makogonenko2*

1MI Pirogov Vinnytsia National Medical University, Vinnytsia, Ukraine;
2Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
*e-mail: ymakogonenko@gmail.com

Received: 01 April 2021; Accepted: 22 September 2021

The correlation relationships between hemostatic potential parameters and concentrations of molecular markers of the hemostasis system: soluble fibrin (sf), D-dimer (DD), fibrinogen (Fg) and protein C (PC) in patients with stenosis of coronary artery 6 months after coronary angioplasty have been investigated. It was found  three directions of changes in the state of the patients hemostasis system: an increasing in fibrinolytic activity (C) ~18% of patients; an increasing in coagulative activity (B) ~31% of patients; and maintaining of the balance between coagulation and fibrinolysis (A) ~51% of patients. In patients with signs of stenosis without angina pectoris, a strong Pearson correlation was shown between the half-life of the clot and the overall hemostatic potential (OHP) (r = 0.75, P << 0.05), a moderate relationship between concentrations of sf and D-dimer (r = 0.67, P <0.05), almost complete connection between coagulation potential (CP) and OHP (r = 0.975, P << 0,05) and strong connection between CP and fibrinolytic potential (FP) (r = 0.80, P << 0.05). In patients with signs of stable angina pectoris, almost complete connection was found between the concentration of sf and D-dimer (r = 0.981, P << 0.05), CP and OHP (r = 0.979, P << 0.05) and a strong connection between CP and FP (r = 0.846, P << 0.05). Possible functional mechanisms of connection between these parameters are discussed.

Keywords: , , , , ,


References:

  1. Marzilli M, Merz CN, Boden WE, Bonow RO, Capozza PG, Chilian WM, DeMaria AN, Guarini G, Huqi A, Morrone D, Patel MR, Weintraub WS. Obstructive coronary atherosclerosis and ischemic heart disease: an elusive link! J Am Coll Cardiol. 2012;60(11):951-956. PubMed, CrossRef
  2. Pepine CJ, Douglas PS. Rethinking stable ischemic heart disease: is this the beginning of a new era? J Am Coll Cardiol. 2012;60(11):957-959. PubMed, CrossRef
  3. Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation. 2005;111(3):363-368. PubMed,CrossRef
  4. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135-1143. PubMed, CrossRef
  5. Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 2005;85(1):9-23. PubMed, CrossRef
  6. Zhou J, Li YS, Chien S. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol. 2014;34(10):2191-2198. PubMed, PubMedCentral, CrossRef
  7. Dong JF. Cleavage of ultra-large von Willebrand factor by ADAMTS-13 under flow conditions. J Thromb Haemost. 2005;3(8):1710-1716. PubMedCrossRef
  8. Owens AP 3rd, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res. 2011;108(10):1284-1297. PubMed, PubMedCentral, CrossRef
  9. Cui Y, Zheng L, Jiang M, Jia R, Zhang X, Quan Q, Du G, Shen D, Zhao X, Su W, Xu H, Huang L. Circulating microparticles in patients with coronary heart disease and its correlation with interleukin-6 and C-reactive protein. Mol Biol Rep. 2013;40(11):6437-6442. PubMed, CrossRef
  10. Wang Y, Zhang S, Luo L, Norström E, Braun OÖ, Mörgelin M, Thorlacius H. Platelet-derived microparticles regulates thrombin generation via phophatidylserine in abdominal sepsis. J Cell Physiol. 2018;233(2):1051-1060. PubMed, CrossRef
  11. Vasina E, Heemskerk JWM, Weber C, Koenen RR. Platelets and platelet-derived microparticles in vascular inflammatory disease. Inflamm Allergy Drug Targets. 2010;9(5):346-354. PubMed, CrossRef
  12. Storozhuk BG, Pyrogova LV, Chernyshenko TM, Kostiuchenko OP, Kolesnikova IM, Platonova TM, Storozhuk OB, Storozhuk LO, Bereznitsky GK, Tsap PYu, Masenko OO, Makogonenko EM, LugovskoyEV. Overall hemostasis potential of the blood plasma and its relation to some molecular markers of the hemostasis system in patients with chronic renal disease of stage VD. Ukr Biochem J. 2018;90(5):60-70. CrossRef
  13. Pyrogova LV, Chernyshenko TM, Kolesnikova IN, Platonova TN, Bereznitsky GK, Makogonenko YM, Lugovskoy EV. Level of overall hemostasis potential in donor and patient plasma in pathology. Ukr Biochem J. 2016;88(2):56-65. PubMed, CrossRef
  14. Lugovskoi EV, Kolesnikova IN, Lugovskaya NE, Litvinova LM, Gritsenko PG, Gogolinskaya GK, Lyashko ED, Kostyuchenko EP, Remizovsky GA, Pedchenko VN, Komisarenko SV. Quantification of D-dimer and soluble fibrin in blood plasma of people with ischemic heart disease and hypertension. Ukr Biokhim Zhurn. 2004;76(6):136-141. (In Russian). PubMed
  15. Lugovskoi EV, Kolesnikova IN, Lugovskaya NE, Gritsenko PG, Litvinova LM, Gogolinskaya GK, Lyashko ED, Kostyuchenko EP, Golota VI, Kurochka VV, Komisarenko SV. Soluble fibrin and D-dimer at normal pregnancy and pregnancy with risk of miscarriage. Ukr Biokhim Zhurn. 2006;78(4):120-129. (In Russian). PubMed
  16. Makogonenko EM, Kirpa SA, Lugovskoi EV, Nazarenko NA, Kudinov SA. Kinetics of glu- and lys-plasminogen activation by the tissue activator in a fibrin clot. Biokhimiia. 1987;52(10):1746-1752. (In Russia). PubMed
  17. Robbie LA, Booth NA, Croll AM, Bennett B. The roles of alpha 2-antiplasmin and plasminogen activator inhibitor 1 (PAI-1) in the inhibition of clot lysis. Thromb Haemost. 1993;70(2):301-306. PubMed, CrossRef
  18. Huebner BR, Moore EE, Moore HB, Stettler GR, Nunns GR, Lawson P , Sauaia A, Kelher M, Banerjee A, Silliman CC. Thrombin Provokes Degranulation of Platelet α-Granules Leading to the Release of Active Plasminogen Activator Inhibitor-1 (PAI-1). Shock. 2018;50(6):671-676. PubMed, PubMedCentral, CrossRef
  19. Rühl H, Berens C, Winterhagen A, Müller J, Oldenburg J, Pötzsch B. Label-Free Kinetic Studies of Hemostasis-Related Biomarkers Including D-Dimer Using Autologous Serum Transfusion. PLoS One. 2015;10(12):e0145012. PubMed, PubMedCentral, CrossRef
  20. Strickland DK, Medved L. Low-density lipoprotein receptor-related protein (LRP)-mediated clearance of activated blood coagulation co-factors and proteases: clearance mechanism or regulation? J Thromb Haemost. 2006;4(7):1484-1486. PubMed, CrossRef
  21. Bagoly Z, Ariëns RAS, Rijken DC , Pieters M, Wolberg AS. Clot Structure and Fibrinolysis in Thrombosis and Hemostasis. Biomed Res Int. 2017;2017:4645137. PubMed, PubMedCentral, CrossRef
  22. Weisel JW, Litvinov RI. The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate. Cardiovasc Hematol Agents Med Chem. 2008;6(3):161-180. PubMed, CrossRef
  23. Diamond SL. Systems Analysis of Thrombus Formation. Circ Res. 2016;118(9):1348-1362. PubMed, PubMedCentral, CrossRef
  24. Suenson E, Bjerrum P, Holm A, Lind B, Meldal M, Selmer J, Petersen LC. The role of fragment X polymers in the fibrin enhancement of tissue plasminogen activator-catalyzed plasmin formation. J Biol Chem. 1990;265(36):22228-22237. PubMed, CrossRef
  25. Page EM, Ariëns RAS. Mechanisms of thrombosis and cardiovascular complications in COVID-19. Thromb Res. 2021;200:1-8. PubMed, PubMedCentral, CrossRef
  26. Nilsen DW, Brosstad F. Discrepant elimination of fibrin des-AA and des-AABB in man. Thromb Haemost. 1986;55(3):439. PubMed, CrossRef
  27. Nilsen DW, Brosstad F, Holm B, Kierulf P, Gravem K, Godal HC. Thrombus-related uptake and vascular clearance of 131 I-fibrin des-AABB as compared to 125 I-fibrinogen in patients with established venous thrombosis. Thromb Haemost. 1984;51(2):165-168.  PubMed, CrossRef
  28. Nilsen DW, Brosstad F, Holm B, Kierulf P, Godal HC. Clearance characteristics of des-AA fibrin and des-AABB fibrin, and thrombus-related uptake of des-AABB fibrin as compared to fibrinogen. Scand J Clin Lab Invest Suppl. 1985;178:115-119. PubMed
  29. Rajagopalan S, Pizzo SV. Characterization of murine peritoneal macrophage receptors for fibrin(ogen) degradation products. Blood. 1986;67(5):1224-1228. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.