Ukr.Biochem.J. 2022; Volume 94, Issue 2, Mar-Apr, pp. 24-30


Calix[4]arene chalcone amide C-1011 elicits differential effects on the viability of 4T1 mouse breast adenocarcinoma cells with different levels of adaptor protein Ruk/CIN85 expression

L. G. Babich1*, S. G. Shlykov1, O. A. Yesypenko2, A. O. Bavelska-Somak1,
A. G. Zahoruiko1, I. R. Horak1, L. B. Drobot1, S. O. Kosterin1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv;

Received: 07 February 2021; Accepted: 01 July 2022

According to our earlier data, calix[4]arene chalcone amides modulate Ca ions exchange in the myometrium mitochondria and the level of inner membrane polarization that can potentially affect cell survival. To test this hypothesis, we studied the effect of calix[4]arene with 4 chalcone amide groups on mitochondria membrane polarization and viability of 4T1 mouse breast adenocarcinoma cells, a surrogate model of human triple-negative breast cancer, and on its highly malignant subline overexpressing the adaptor protein Ruk/CIN85. Mitochondria membrane potential was measured by flow cytometry, and cell viability was assessed using Trypan blue dye exclusion. It was shown that mitochondrial membranes of control (Mock) cells had a higher polarization level (67.80 ± 8.82 r.u., n = 5) compared to 4T1 cells with up-regulation of Ruk/CIN85 (RukUp cells) (25.42 ± 2.58 r.u., n = 4). Upon incubation of cells with 1 μM calix[4]arene C-1011, the CCCP-sensitive component of mitochondrial membranes polarization decreased (by almost 50%) in 4T1 Mock cells and did not change in RukUp cells compared with the control. It was demonstrated that 1 μM calix[4]arene C-1011 suppressed the viability of 4T1 Mock cells by 45%, but did not affect RukUp cells considerably. It was suggested that calix[4]arene chalcone amide С-1011 decreased mouse breast adenocarcinoma 4T1 cell viability­ at least by affecting mitochondrial membrane polarization.The data obtained indicate the prospects of further studies of calix[4]arene chalcone amide as a potential anticancer drug candidate.

Keywords: , , ,


  1. Lebrón JA, López-López M, García-Calderón CB, Rosado IV, Balestra FR, Huertas P, Rodik RV, Kalchenko VI, Bernal E, Moyá ML, López-Cornejo P, Ostos FJ. Multivalent calixarene-based liposomes as platforms for gene and drug delivery. Pharmaceutics. 2021;13(8):1250. PubMed, PubMedCentral, CrossRef
  2. Shetty D, Jahovic I, Raya J, Asfari Z, Olsen JC, Trabolsi A. Porous Polycalix[4]arenes for Fast and Efficient Removal of Organic Micropollutants from Water. ACS Appl Mater Interfaces. 2018;10(3):2976-2981. PubMed, CrossRef
  3. Orlikova B, Tasdemir D, Golais F, Dicato M, Diederich M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr. 2011;6(2):125-147. PubMed, PubMedCentral, CrossRef
  4. León-González AJ, Acero N, Muñoz-Mingarro В, Navarro I, Martín-Cordero C. Chalcones as Promising Lead Compounds on Cancer Therapy. Curr Med Chem. 2015;22(30):3407-3425. PubMed, CrossRef
  5. Mahapatra DK, Bharti SK. Therapeutic potential of chalcones as cardiovascular agents. Life Sci. 2016;148:154-172. PubMed, CrossRef
  6. Zhang S, Li T, Zhang Y, Xu H, Li Y, Zi X, Yu H, Li J, Jin CY, Liu HM. A new brominated chalcone derivative suppresses the growth of gastric cancer cells in vitro and in vivo involving ROS mediated up-regulation of DR5 and 4 expression and apoptosis. Toxicol Appl Pharmacol. 2016;309:77-86. PubMed, PubMedCentral, CrossRef
  7. Zhou B, Xing C. Diverse molecular targets for chalcones with varied bioactivities. Med Chem (Los Angeles). 2015;5(8):388-404. PubMed, PubMedCentral, CrossRef
  8. Babich LG, Shlykov SG, Boyko VI, Kliachina MA, Kosterin SA. Calix[4]arenes C-136 and C-137 hyperpolarize myometrium mitochondria membranes. Russ J Bioorg Chem. 2013;39(6):728-735. (In Russian). PubMed, CrossRef
  9. Shlykov SG, Sylenko AV, Babich LG, Karakhim SO, Chunikhin OYu, Yesypenko OA, Kalchenko VI, Kosterin SO. Calix[4]arene chalcone amides as effectors of mitochondria membrane polarization. Nanosyst Nanomater Nanotechnol. 2020;18(3):473-485. CrossRef
  10. Samoylenko A, Vynnytska-Myronovska B, Byts N, Kozlova N, Basaraba O, Pasichnyk G, Palyvoda K, Bobak Y, Barska M, Mayevska O, Rzhepetsky Yu, Shuvayeva H, Lyzogubov V, Usenko V, Savran V, Volodko N, Buchman V, Kietzmann T, Drobot L. Increased levels of the HER1 adaptor protein Rukl/CIN85 contribute to breast cancer malignancy. Carcinogenesis. 2012;33(10):1976-1984. PubMed, CrossRef
  11. Horak IR, Gerashchenko DS, Drobot LB. Adaptor protein Ruk/CIN85 modulates resistance to doxorubicin of murine 4T1 breast cancer cells. Ukr Biochem J. 2018;90(3):94-100. CrossRef
  12. Horak IR, Drobot LB, Borsig L, Knopfova L, Smarda J. Overexpression of adaptor protein Ruk/CIN85 in mouse breast adenocarcinoma 4T1 cells induces an increased migration rate and invasion potential. Biopolym Cell. 2018;34(4):284-291. CrossRef
  13. Klyachina MA, Boyko VI, Yakovenko AV, Babich LG, Shlykov SG, Kosterin SO, Khilya VP, Kalchenko VI. Calix[4]arene N-chalconeamides: synthesis and influence on Mg2+,ATP-dependent Ca2+ accumulation in the smooth muscle subcellular structures. J Incl Phenom Macrocycl Chem. 2008;60(1–2):131–137. CrossRef
  14. Heppner GH, Miller FR, Shekhar PM. Nontransgenic models of breast cancer. Breast Cancer Res. 2000;2(5):331-334.PubMed, PubMedCentral, CrossRef
  15. Grasso D, Zampieri LX, Capelôa T, Van de Velde JA, Sonveaux P. Mitochondria in cancer. Cell Stress. 2020;4(6):114-146. PubMed, PubMedCentral, CrossRef
  16. Mani S, Swargiary G, Tyagi S, Singh M, Jha NK, Singh KK. Nanotherapeutic approaches to target mitochondria in cancer. Life Sci. 2021;281:119773. PubMed, CrossRef
  17. Genovese I, Carinci M, Modesti L, Aguiari G, Pinton P, Giorgi C. Mitochondria: Insights into crucial features to overcome cancer chemoresistance. Int J Mol Sci. 2021;22(9):4770. PubMed, PubMedCentral, CrossRef
  18. Qin J, Gong N, Liao Z, Zhang S, Timashev P, Huo S, Liang XJ. Recent progress in mitochondria-targeting-based nanotechnology for cancer treatment. Nanoscale. 2021;13(15):7108-7118. PubMed, CrossRef
  19. Sanderson TH, Reynolds CA, KumarR, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 2013;47(1):9-23.PubMed, PubMedCentral, CrossRef
  20. Gutierrez RMP, Muniz-Ramirez A, Sauceda JV. Review: The potential of chalcones as a source of drugs. African J Pharm Pharmacol. 2015;9(8):237–257. CrossRef
  21. El-Shaqanqery HE, Mohamed RH, Sayed AA. Mitochondrial Effects on Seeds of Cancer Survival in Leukemia. Front Oncol. 2021;11:745924. PubMed, PubMedCentral, CrossRef
  22. Hu Y, Lu W, Che G, Wang P, Chen Z, Zhou Y, Ogasawara M, Trachootham D, Feng L, Pelicano H, Chiao PJ, Keating MJ, Garcia-Manero G, Huang P. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res. 2012;22(2):399-412. PubMed, PubMedCentral, CrossRef
  23. Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 2015;356(2 Pt A):156-164. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.