Ukr.Biochem.J. 2022; Volume 94, Issue 2, Mar-Apr, pp. 51-56


Study of matrix metalloproteinase activity in patients with autoimmune thyroiditis

R. R. Rahimova

Azerbaijan Medical University, Department of Biochemistry, Baku;

Received: 23 December 2021; Accepted: 01 July 2022

One of the most important pathogenetic mechanisms of autoimmune thyroiditis (AIT) is the violation of immunological tolerance and the development of the autoimmune process, the markers of which are various biologically active substances, in particular, matrix metalloproteinases (MMP) of the extracellular matrix (ECM). MMPs play a crucial role in the development of pathological processes in these diseases, contributing­ to matrix degradation due to imbalance between the activity of enzymes and their inhibitors. The aim of the work was to study the activity of key metalloproteinases and the level of α2-macroglobulin in patients with autoimmune thyroiditis. The diagnosis of AIT was established based on the study of data on anamnesis, thyroid status, the results of ultrasound of TG, and the presence of antibodies to the thyroid-stimulating hormone receptor (TSH) in blood plasma. Patients were enrolled in 2 groups: group 1 – 74 patients with a manifest form of the disease; group 2 – 96 patients with a subclinical form of the disease. The study of matrix metalloprotein activity in the examined patients showed a statistically significant (P = 0.015) increase in MMP-3 and MMP-7 activity in patients with AIT compared to the corresponding parameters in persons of the control group. Thus, levels of MMP-3 and 7 were in the group of patients, respectively 56 (51.0; 59.0) and 4.6 (4.3; 5.2) ng/ml, in control 23.0 (16.0; 26.0) and 3.6 (3.4; 4.1) ng/ml, respectively.

Keywords: , , ,


  1. Hamous J, Dvořák J, Bušovský I, Šnajdr M. Hashimotos thyroiditis. Rozhl Chir. 2021;100(3):110-112. PubMed, CrossRef
  2. Ralli M, Angeletti D, Fiore M, D’Aguanno V, Lambiase A, Artico M, de Vincentiis M, Greco A. Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun Rev. 2020;19(10):102649. PubMed, CrossRef
  3. Nagasaki T, Nagata Y, Wakita Y, Yamada S, Goto H, Imanishi Y, Onoda N, Emoto M, Inaba M. Association of heterogeneity of the thyroid gland with matrix metalloproteinase-3 in rheumatoid arthritis patients with Hashimoto’s thyroiditis. Minerva Endocrinol. 2018;43(4):398-405. PubMed, CrossRef
  4. Shadrina AS, Plieva YZ, Kushlinskiy DN, Morozov AA, Filipenko ML, Chang VL, Kushlinskii NE. Classification, regulation of activity, and genetic polymorphism of matrix metalloproteinases in health and disease. Almanac Clin Med. 2017;45(4):266-279. (In Russian). CrossRef
  5. Li J, Wang JM, Liu YH, Zhang Z, Han N, Wang JY, Xue SH, Wang P. Effect of microRNA-106b on the invasion and proliferation of trophoblasts through targeting MMP-2. Zhonghua Fu Chan Ke Za Zhi. 2017;52(5):327-332. PubMed, CrossRef
  6. Yang L, Song X, Zhu J, Li M, Ji Y, Wu F, Chen Y, Cui X, Hu J, Wang L, Cao Y, Wei Y, Zhang W, Li F. Tumor suppressor microRNA-34a inhibits cell migration and invasion by targeting MMP-2/MMP-9/FNDC3B in esophageal squamous cell carcinoma. Int J Oncol. 2017;51(1):378-388. PubMed, CrossRef
  7. Wortman BG, Bosse T, Nout RA, Lutgens LCHW, van der Steen-Banasik EM, Westerveld H, van den Berg H, Slot A, De Winter KAJ, Verhoeven-Adema KW, Smit VTHBM, Creutzberg CL, PORTEC Study Group. Molecular-integrated risk profile to determine adjuvant radiotherapy in endometrial cancer: Evaluation of the pilot phase of the PORTEC-4a trial. Gynecol Oncol. 2018;151(1):69-75. PubMed, CrossRef
  8. Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells. 2020;9(5):1313. PubMed, PubMedCentral, CrossRef
  9. Young D, Das N, Anowai A, Dufour A. Matrix Metalloproteases as Influencers of the Cells’ Social Media. Int J Mol Sci. 2019;20(16):3847. PubMed, PubMedCentral, CrossRef
  10. Shay G, Tauro M, Loiodice F, Tortorella P, Sullivan DM, Hazlehurst LA, Lynch CC. Selective inhibition of matrix metalloproteinase-2 in the multiple myeloma-bone microenvironment. Oncotarget. 2017;8(26):41827-41840. PubMed, PubMedCentral, CrossRef
  11. Sun W, Liu DB, Li WW, Zhang LL, Long GX, Wang JF, Mei Q, Hu GQ. Interleukin-6 promotes the migration and invasion of nasopharyngeal carcinoma cell lines and upregulates the expression of MMP-2 and MMP-9. Int J Oncol. 2014;44(5):1551-1560. PubMed, CrossRef
  12. Singh D, Srivastava SK, Chaudhuri TK, Upadhyay G. Multifaceted role of matrix metalloproteinases (MMPs). Front Mol Biosci. 2015;2:19. PubMed, PubMedCentral, CrossRef
  13. Rodríguez-Calvo R, Ferrán B, Alonso J, Martí-Pàmies I, Aguiló S, Calvayrac O, Rodríguez C, Martínez-González J. NR4A receptors up-regulate the antiproteinase alpha-2 macroglobulin (A2M) and modulate MMP-2 and MMP-9 in vascular smooth muscle cells. Thromb Haemost. 2015;113(6):1323-1334. PubMed, CrossRef
  14. Tsai CC, Wu SB, Chang PC, Wei YH. Alteration of Connective Tissue Growth Factor (CTGF) Expression in Orbital Fibroblasts from Patients with Graves’ Ophthalmopathy. PLoS One. 2015;10(11):e0143514. PubMed, PubMedCentral, CrossRef
  15. Slowik M, Urbaniak-Kujda D, Bohdanowicz-Pawlak A, Kapelko-Slowik K, Dybko J, Wolowiec D, Jazwiec B, Daroszewski J. CD8+CD28-lymphocytes in peripheral blood and serum concentrations of soluble interleukin 6 receptor are increased in patients with Graves’ orbitopathy and correlate with disease activity. Endocr Res. 2012;37(2):89-95. PubMed, CrossRef
  16. Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M, Kaczmarek L. MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci. 2019;76(16):3207-3228. PubMed, PubMedCentral, CrossRef
  17. Nawaz M, Shah N, Zanetti BR, Maugeri M, Silvestre RN, Fatima F, Neder L, Valadi H. Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells. 2018;7(10):167. PubMed, PubMedCentral, CrossRef
  18. Yoon JS, Chae MK, Lee SY, Lee EJ. Anti-inflammatory effect of quercetin in a whole orbital tissue culture of Graves’ orbitopathy. Br J Ophthalmol. 2012;96(8):1117-1121. PubMed, CrossRef
  19. Kapelko-Słowik K, Słowik M, Szaliński M, Dybko J, Wołowiec D, Prajs I, Bohdanowicz-Pawlak A, Biernat M, Urbaniak-Kujda D. Elevated serum concentrations of metalloproteinases (MMP-2, MMP-9) and their inhibitors (TIMP-1, TIMP-2) in patients with Graves’ orbitopathy. Adv Clin Exp Med. 2018;27(1):99-103. PubMed, CrossRef
  20. Gorodetskaya IV, Gusakova EA. Effect of the thyroid status on the proteinases/inhibitors system under stress. Biomed Khim. 2015;61(3):389-393. (In Russian). PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.