Ukr.Biochem.J. 2022; Volume 94, Issue 3, May-Jun, pp. 16-25

doi: https://doi.org/10.15407/ubj94.03.016

Ferric oxide nanoparticles administration suppresses isoniazid induced oxidative stress in the rat brain tissue

H. Faramarzi1, J. Saffari-Chaleshtori2, S. Zolghadri3,
M. Beheshtroo4, A. Faramarzi5, S. M. Shafiee4,6*

1Department of Community Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Iran;
2Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran;
3Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran;
4Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran;
5Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran;
6Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz Iran;
*e-mail: shafieem@sums.ac.ir

Received: 08 November 2021; Revised: 27 June 2021;
Accepted: 29 September 2022; Available on-line: 06 October 2022

Isoniazid is one of the anti-tuberculosis therapeutic agents capable of causing side effects such as oxidative stress, brain tissue damage and mental disorders. This study aimed to investigate the effect of ferric oxi­de (Fe2O3) nanoparticles administration on isoniazid-induced oxidative stress parameters in rat brain tissue. Forty adult male Wistar rats (200–250 g) were randomly divided into a group with no treatment as control and four experimental groups. Animals of experimental groups received intraperitoneally for 12 days daily saline, 50 mg/kg of isoniazid, 50 mg/kg of isoniazid and 0.2 or 0.4 mg/kg Fe2O3 nanoparticles accordingly. The activity of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), the level of glutathione (GSH), malondialdehyde (MDA) and total protein were determined in brain tissue homogenates by spectrophotometric methods. It was shown that CAT and GST activities, as well as GSH and MDA levels in the brain tissue of animals in the isoniazid-treated group were increased compared with the control untreated group, while following the treatment with 0.2 or 0.4 mg/kg Fe2O3 nanoparticles the studied oxidative stress parameters returned to the control level (P < 0.05). No changes in SOD activity in any of the treated groups were observed compared to the control. This study showed that the administration of ferric oxide nanoparticles can suppress isoniazid-induced oxidative stress in the brain tissue of rats mentally damaged by isoniazid.

Keywords: , , ,


References:

  1. Campanerut-Sá PA, Ghiraldi-Lopes LD, Meneguello JE, Fiorini A, Evaristo GP, Siqueira VL, Scodro RB, Patussi EV, Donatti L, Souza EM, Cardoso RF. Proteomic and morphological changes produced by subinhibitory concentration of isoniazid in Mycobacterium tuberculosis. Future Microbiol. 2016;11(9):1123-1132. PubMed, CrossRef
  2. Ni J, Wang H, Wei X, Shen K, Sha Y, Dong Y, Shu Y, Wan X, Cheng J, Wang F, Liu Y. Isoniazid causes heart looping disorder in zebrafish embryos by the induction of oxidative stress. BMC Pharmacol Toxicol. 2020;21(1):22. PubMed, PubMedCentral, CrossRef
  3. Sivannan S, Vishnuvardhan A, Elumalai K, Srinivasan S, Eluri K, Elumalai M, Muthu R. Isoniazid-induced liver disorder in the treatment of tuberculosis. Chronic Dis Transl Med. 2018;4(4):268-270. PubMed, PubMedCentral, CrossRef
  4. Apalowo O, Musa S, Asaolu F, Apata J, Oyedeji T, Babalola O. Protective Roles of Kolaviron Extract from Garcinia kola Seeds against Isoniazid-induced Kidney Damage in Wistar Rats. Eur J Med Plants. 2019;26(4):1-8. CrossRef
  5. Ruan LY, Fan JT, Hong W, Zhao H, Li MH, Jiang L, Fu YH, Xing YX, Chen C, Wang JS. Isoniazid-induced hepatotoxicity and neurotoxicity in rats investigated by 1 H NMR based metabolomics approach. Toxicol Lett. 2018;295:256-269. PubMed, CrossRef
  6. Georgieva N, Gadjeva V, Tolekova A. New isonicotinoylhydrazones with SSA protect against oxidative-hepatic injury of isoniazid. TJS. 2004;2(1):37-43.
  7. Leutner S, Eckert A, Müller WE. ROS generation, lipid peroxidation and antioxidant enzyme activities in the aging brain. J Neural Transm (Vienna). 2001;108(8-9):955-967. PubMed, CrossRef
  8. Nandi A, Yan LJ, Jana CK, Das N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid Med Cell Longev. 2019;2019:9613090. PubMed, PubMedCentral, CrossRef
  9. Mazur-Bialy AI, Kozlowska K, Pochec E, Bilski J, Brzozowski T. Myokine irisin-induced protection against oxidative stress in vitro. Involvement of heme oxygenase-1 and antioxidazing enzymes superoxide dismutase-2 and glutathione peroxidase. J Physiol Pharmacol. 2018;69(1):117-125. PubMed, CrossRef
  10. Song Q, Liu L, Yu J, Zhang J, Xu M, Sun L, Luo H, Feng Z, Meng G. Dihydromyricetin attenuated Ang II induced cardiac fibroblasts proliferation related to inhibitory of oxidative stress. Eur J Pharmacol. 2017;807:159-167. PubMed, CrossRef
  11. Wang LL, Yu QL, Han L Ma XL, Song RD, Zhao SN, Zhang WH. Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat. Food Chem. 2018;244:394-402. PubMed, CrossRef
  12. Raefsky SM, Furman R, Milne G, Pollock E, Axelsen P, Mattson MP, Shchepinov MS. Deuterated polyunsaturated fatty acids reduce brain lipid peroxidation and hippocampal amyloid β-peptide levels, without discernable behavioral effects in an APP/PS1 mutant transgenic mouse model of Alzheimer’s disease. Neurobiol Aging. 2018;66:165-176. PubMed, PubMedCentral, CrossRef
  13. Khatri N, Thakur M, Pareek V, Kumar S, Sharma S, Datusalia AK. Oxidative Stress: Major Threat in Traumatic Brain Injury. CNS Neurol Disord Drug Targets. 2018;17(9):689-695. PubMed, CrossRef
  14. Sepidarkish M, Farsi F, Akbari-Fakhrabadi M, Namazi N, Almasi-Hashiani A, Maleki Hagiagha A, Heshmati J. The effect of vitamin D supplementation on oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Pharmacol Res. 2019;139:141-152. PubMed, CrossRef
  15. Shingnaisui K, Dey T, Manna P, Kalita J. Therapeutic potentials of Houttuynia cordata Thunb. against inflammation and oxidative stress: A review. J Ethnopharmacol. 2018;220:35-43. PubMed, PubMedCentral, CrossRef
  16. Wang W, Kang PM. Oxidative Stress and Antioxidant Treatments in Cardiovascular Diseases. Antioxidants (Basel). 2020;9(12):1292. PubMed, PubMedCentral, CrossRef
  17. Mihu MR, Cabral V, Pattabhi R, Tar MT, Davies KP, Friedman AJ, Martinez LR, Nosanchuk JD. Sustained Nitric Oxide-Releasing Nanoparticles Interfere with Methicillin-Resistant Staphylococcus aureus Adhesion and Biofilm Formation in a Rat Central Venous Catheter Model. Antimicrob Agents Chemother. 2016;61(1):e02020-16. PubMed, PubMedCentral, CrossRef
  18. Mauricio MD, Guerra-Ojeda S, Marchio P, Valles SL, Aldasoro M, Escribano-Lopez I, Herance JR, Rocha M, Vila JM, Victor VM. Nanoparticles in Medicine: A Focus on Vascular Oxidative Stress. Oxid Med Cell Longev. 2018;2018:6231482. PubMed, PubMedCentral, CrossRef
  19. 1Paunovic J, Vucevic D, Radosavljevic T, Mandić-Rajčević S, Pantic I. Iron-based nanoparticles and their potential toxicity: Focus on oxidative stress and apoptosis. Chem Biol Interact. 2020;316:108935. PubMed, CrossRef
  20. Burello E, Worth AP. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology. 2011;5(2):228-235. PubMed, CrossRef
  21. Zhang J, Fan C, Zhang H, Wang Z, Zhang J, Song M. Ferric oxide/carbon nanoparticles enhanced bio-hydrogen production from glucose. Int J Hydrogen Energy. 2018;43(18):8729-8738. CrossRef
  22. Bhattacharya K, Gogoi B, Buragohain AK, Deb P. Fe₂O₃/C nanocomposites having distinctive antioxidant activity and hemolysis prevention efficiency. Mater Sci Eng C Mater Biol Appl. 2014;42:595-600. PubMed, CrossRef
  23. Abbasi BA, Iqbal J, Mahmood T, Qyyum A, Kanwal S. Biofabrication of iron oxide nanoparticles by leaf extract of Rhamnus virgata: characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. Appl Organomet Chem. 2019;33(7):e4947. CrossRef
  24. Abdullah JAA, Eddine LS, Abderrhmane B, Alonso-González M, Guerrero A, Romero A. Green synthesis and characterization of iron oxide nanoparticles by pheonix dactylifera leaf extract and evaluation of their antioxidant activity. Sustainable Chem Pharm. 2020;17:100280. CrossRef
  25. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130-7139. PubMed
  26. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-126. PubMed, CrossRef
  27. Winterbourn CC, Hawkins RE, Brian M, Carrell RW. The estimation of red cell superoxide dismutase activity. J Lab Clin Med. 1975;85(2):337-341. PubMed
  28. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254. PubMed, CrossRef
  29. Siegers CP, Riemann D, Thies E, Younes M. Glutathione and GSH-dependent enzymes in the gastrointestinal mucosa of the rat. Cancer Lett. 1988;40(1):71-76. PubMed, CrossRef
  30. Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta. 1978;90(1):37-43. PubMed, CrossRef
  31. Shohami E, Beit-Yannai E, Horowitz M, Kohen R. Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. J Cereb Blood Flow Metab. 1997;17(10):1007-1019. PubMed, CrossRef
  32. Spiotta AM, Stiefel MF, Gracias VH, Garuffe AM, Kofke WA, Maloney-Wilensky E, Troxel AB, Levine JM, Le Roux PD. Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J Neurosurg. 2010;113(3):571-580. PubMed, CrossRef
  33. Abdel-Rahman M, Rezk MM, Ahmed-Farid OA, Essam S, Abdel Moneim AE. Saussurea lappa root extract ameliorates the hazards effect of thorium induced oxidative stress and neuroendocrine alterations in adult male rats. Environ Sci Pollut Res Int. 2020;27(12):13237-13246.  PubMed, CrossRef
  34. Verma AK, Yadav A, Singh SV, Mishra P, Rath SK. Isoniazid induces apoptosis: Role of oxidative stress and inhibition of nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Life Sci. 2018;199:23-33. PubMed, CrossRef
  35. Ahadpour M, Eskandari MR, Mashayekhi V, Haj Mohammad Ebrahim Tehrani K, Jafarian I, Naserzadeh P, Hosseini MJ. Mitochondrial oxidative stress and dysfunction induced by isoniazid: study on isolated rat liver and brain mitochondria. Drug Chem Toxicol. 2016;39(2):224-232. PubMed, CrossRef
  36. Chowdhury A, Santra A, Bhattacharjee K, Ghatak S, Saha DR, Dhali GK. Mitochondrial oxidative stress and permeability transition in isoniazid and rifampicin induced liver injury in mice. J Hepatol. 2006;45(1):117-126. PubMed, CrossRef
  37. de Ávila MB, Bitencourt-Ferreira G, de Azevedo WF. Structural Basis for Inhibition of Enoyl-[Acyl Carrier Protein] Reductase (InhA) from Mycobacterium tuberculosis. Curr Med Chem. 2020;27(5):745-759. PubMed, CrossRef
  38. Bulatovic VM, Wengenackv, Uhl JR, Hall L, Roberts GD, Cockerill FR 3rd, Rusnak F. Oxidative stress increases susceptibility of Mycobacterium tuberculosis to isoniazid. Antimicrob Agents Chemother. 2002;46(9):2765-2771. PubMed, PubMedCentral, CrossRef
  39. Çelik H, Kucukler S, Çomaklı S, Caglayan C, Özdemir S, Yardım A, Karaman M, Kandemir FM. Neuroprotective effect of chrysin on isoniazid-induced neurotoxicity via suppression of oxidative stress, inflammation and apoptosis in rats. Neurotoxicology. 2020;81:197-208. PubMed, CrossRef
  40. Lee MT, Lin WC, Yu B, Lee TT. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals – A review. Asian-Australas J Anim Sci. 2017;30(3):299-308. PubMed, PubMedCentral, CrossRef
  41. Abrahams S, Haylett WL, Johnsonv G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience. 2019;406:1-21. PubMed, CrossRef
  42. Samarghandian S, Azimi-Nezhad M, Borji A, Samini M, Farkhondeh T. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats. BMC Complement Altern Med. 2017;17(1):249. PubMed, PubMedCentral, CrossRef
  43. Kumar H, Bhardwaj K, Nepovimova E, Kuča K, Dhanjal DS, Bhardwaj S, Bhatia SK, Verma R, Kumar D. Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress. Nanomaterials (Basel). 2020;10(7):1334. PubMed, PubMedCentral, CrossRef
  44. Younis NK, Ghoubaira JA, Bassil EP, Tantawi HN, Eid AH. Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine. 2021;36:102433. PubMed, CrossRef
  45. Dou J, Li L, Guo M, Mei F, Zheng D, Xu H, Xue R, Bao X, Zhao F, Zhang Y. Iron Oxide Nanoparticles Combined with Cytosine Arabinoside Show Anti-Leukemia Stem Cell Effects on Acute Myeloid Leukemia by Regulating Reactive Oxygen Species. Int J Nanomedicine. 2021;16:1231-1244. PubMed, PubMedCentral, CrossRef
  46. Mohan MSG, Ramakrishnan T, Mani V, Achary A. Protective effect of crude sulphated polysaccharide from Turbinaria ornata on isoniazid rifampicin induced hepatotoxicity and oxidative stress in the liver, kidney and brain of adult Swiss albino rats. Indian J Biochem Biophys. 2018;55:237-244.
  47. Alkaladi A. Vitamins E and C ameliorate the oxidative stresses induced by zinc oxide nanoparticles on liver and gills of Oreochromis niloticus. Saudi J Biol Sci. 2019;26(2):357-362. PubMed, PubMedCentral, CrossRef
  48. Sunarsih ES, Anggraeny EN, Wibowo PSL, Elisa N. Phytochemical Screening and Antioxidant Activity of Strawberry Juice (Fragaria ananassa Duchessne) Against Ureum Level, Creatinin, and Enzyme Catalase Activity In Isoniazid-Induced Wistar Male Rats. STRADA Jurnal Ilmiah Kesehatan. 2020;9(2):1595-604. CrossRef
  49. Chirra HD, Sexton T, Biswal D, Hersh LB, Hilt JZ. Catalase-coupled gold nanoparticles: comparison between the carbodiimide and biotin-streptavidin methods. Acta Biomater. 2011;7(7):2865-2872. PubMed, PubMedCentral, CrossRef
  50. Zhang HM, Cao J, Tang BP, Wang YQ. Effect of TiO₂ nanoparticles on the structure and activity of catalase. Chem Biol Interact. 2014;219:168-174.
    PubMed, CrossRef
  51. Danh HC, Benedetti MS, Dostert P. Differential changes in superoxide dismutase activity in brain and liver of old rats and mice. J Neurochem. 1983;40(4):1003-1007. PubMed, CrossRef
  52. Mofeed J, Mosleh YY. Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture. Ecotoxicol Environ Saf. 2013;95:234-240. PubMed, CrossRef
  53. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329-354. PubMed, PubMedCentral, CrossRef
  54. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem. 2017;524:13-30. PubMed, CrossRef
  55. Runa S, Lakadamyali M, Kemp ML, Payne CK. TiO2 Nanoparticle-Induced Oxidation of the Plasma Membrane: Importance of the Protein Corona. J Phys Chem B. 2017;121(37):8619-8625. PubMed, CrossRef
  56. He M, Yan Y, Pei F, Wu M, Gebreluel T, Zou S, Wang C. Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Sci Rep. 2017;7(1):15526. PubMed, PubMedCentral, CrossRef
  57. Behera T, Swain P, Rangacharulu P, Samanta M. Nano-Fe as feed additive improves the hematological and immunological parameters of fish, Labeo rohita H. Appl Nanosci. 2014;4(6):687-694. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.