Ukr.Biochem.J. 2023; Volume 95, Issue 5, Sep-Oct, pp. 41-50

doi: https://doi.org/10.15407/ubj95.05.041

Novel biochemical markers for the prediction of renal injury in beta-thalassemia major pediatric patients

A. J. Shwayel1*, A. M. Jewad1, M. Q. Abdulsattar2

1Department of Medical Laboratory Technology, Health and Medical Technical College,
Southern Technical University, Basrah, Iraq;
2Thi-Qar Health Directorate, Iraq;
*е-mail: ameeralzaidy6@gmail.com

Received: 07 June 2023; Revised: 14 August 2023;
Accepted: 27 October 2023; Available on-line: 06 November 2023

Beta-thalassemia major is a severe inherited disorder characterized by inadequate production of hemoglobin beta chains, ineffective erythropoiesis, chronic hemolysis and necessitates lifelong transfusions, which lead to iron overload. The disease manifests itself in early childhood and persists throughout an individual’s life with a high risk of developing renal impairment, which cannot be reliably determined using routine markers. The objective of this research was to apply biomarkers to the evaluation of renal injury in pediatric­ patients within the age range of 1–14 years diagnosed with beta-thalassemia major. In the case-control study, the blood samples obtained in the Genetic Hematology Center in Thi-Qar Iraq Province were used: 60 samples from healthy individuals and 60 samples from the patients with beta-thalassemia, subdivided into 1-7 and 8-14 years old groups. The levels of hemoglobin, ferritin, creatinine and potassium were estimated with standard tests, enzyme-linked immunoassay was used to determine the level of neutrophil gelatinase-associated lipocalin (NGAL) and beta-2-microglobulin (β2M) as novel markers of tubular and glomerular dysfunctions. The study revealed a statistically significant decrease in hemoglobin, serum potassium levels and an increase in ferritin, NGAL and β2M levels in the patients from both groups compared to controls and elevation of creatinine level in the 8–14-year-old group. It was concluded that NGAL and β2M levels may be considered indicators for the early diagnosis of renal injury in pediatric patients with beta-thalassemia, as these biomarkers exhibit elevated levels before an increase in creatinine is observed.

Keywords: , , , , ,


References:

  1. Kadhim KA, Baldawi KH, Lami FH. Prevalence, Incidence, Trend, and Complications of Thalassemia in Iraq. Hemoglobin. 2017;41(3):164-168. PubMed, CrossRef
  2. Polus RK. Prevalence of hemoglobinopathies among marrying couples in Erbil province of Iraq. Iraqi J Hematol. 2017;6(2):90-93.‏ CrossRef
  3. Arab-Zozani M, Kheyrandish S, Rastgar A, Miri-Moghaddam E. A Systematic Review and Meta-Analysis of Stature Growth Complications in β-thalassemia Major Patients. Ann Glob Health. 2021;87(1):48. PubMed, PubMedCentral, CrossRef
  4. Sadullah RK, Atroshi SD, Al-Allawi NA. Complications and Challenges in the Management of Iraqi Patients with β-Thalassemia Major: A Single-center Experience. Oman Med J. 2020;35(4):e152. PubMed, PubMedCentral, CrossRef
  5. Viprakasit V, Ekwattanakit S. Clinical Classification, Screening and Diagnosis for Thalassemia. Hematol Oncol Clin North Am. 2018;32(2):193-211. PubMed,CrossRef
  6. Tanous O, Azulay Y, Halevy R, Dujovny T, Swartz N, Colodner R, Koren A, Levin C. Renal function in β-thalassemia major patients treated with two different iron-chelation regimes. BMC Nephrol. 2021;22(1):418. PubMed, PubMedCentral, CrossRef
  7. Bakr A, Al-Tonbary Y, Osman G, El-Ashry R. Renal complications of beta-thalassemia major in children. Am J Blood Res. 2014;4(1):1-6. PubMed, PubMedCentral
  8. Ahmed HA, Salama KM, Kaddah AM, Mohamed RE, Abdelsalam MM. Highlights on Deferasirox Use and its Renal Toxicity in Children with Beta Thalassemia Major. Egypt J Hosp Med. 2023;90(1):1115–1119. CrossRef
  9. Sleiman J, Tarhini A, Taher AT. Renal complications in thalassemia. Thalass Reports. 2018;8(1):7481. CrossRef
  10. Eilenberg W, Stojkovic S, Piechota-Polanczyk A, Kaun C, Rauscher S, Gröger M, Klinger M, Wojta J, Neumayer C, Huk I, Demyanets S. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is Associated with Symptomatic Carotid Atherosclerosis and Drives Pro-inflammatory State In Vitro. Eur J Vasc Endovasc Surg. 2016;51(5):623-631. PubMed, CrossRef
  11. Shang W, Wang Z. The Update of NGAL in Acute Kidney Injury. Curr Protein Pept Sci. 2017;18(12):1211-1217. PubMed, CrossRef
  12. Karaman K, Şahin S, Geylan H, Yaşar AŞ, Çetin M, Kömüroğlu AU, Öner AF. Evaluation of Renal Function Disorder With Urinary Neutrophil Gelatinase-associated Lipocalin Level in Patients With β-Thalassemia Major. J Pediatr Hematol Oncol. 2019;41(7):507-510. PubMed,CrossRef
  13. Argyropoulos CP, Chen SS, Ng YH, Roumelioti ME, Shaffi K, Singh PP, Tzamaloukas AH. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases. Front Med (Lausanne). 2017;4:73. PubMed, PubMedCentral, CrossRef
  14. Barton KT, Kakajiwala A, Dietzen DJ, Goss CW, Gu H, Dharnidharka VR. Using the newer Kidney Disease: Improving Global Outcomes criteria, beta-2-microglobulin levels associate with severity of acute kidney injury. Clin Kidney J. 2018;11(6):797-802. PubMed, PubMedCentral, CrossRef
  15. Bain BJ, Bates I, Laffan MA. Dacie and lewis practical haematology. Elsevier Health Sciences, 2016.‏
  16. Şen V, Ece A, Uluca Ü, Söker M, Güneş A, Kaplan I, Tan İ, Yel S, Mete N, Sahin C. Urinary early kidney injury molecules in children with beta-thalassemia major. Ren Fail. 2015;37(4):607-613. PubMed, CrossRef
  17. Thongsaen P, Tonsawan P, Wanitpongpun C, Lanamtieng T, Phiphitaporn P, Teawtrakul N. Clinical features and risk factors of renal dysfunctions in thalassemic patients. Int Urol Nephrol. 2023;55(7):1779-1785. PubMed, CrossRef
  18. Hashemieh M. Early Detection of Renal Dysfunction in β Thalassemia with Focus on Novel Biomarkers. Iran J Ped Hematol Oncol. 2020;10(1):57–68. CrossRef
  19. McGann PT, Nero AC, Ware RE. Clinical Features of β-Thalassemia and Sickle Cell Disease. Adv Exp Med Biol. 2017;1013:1-26. PubMed, CrossRef
  20. Bou-Fakhredin R, Rivella S, Cappellini MD, Taher AT. Pathogenic Mechanisms in Thalassemia I: Ineffective Erythropoiesis and Hypercoagulability. Hematol Oncol Clin North Am. 2023;37(2):341-351. PubMed, CrossRef
  21. Musallam KM, Vitrano A, Meloni A, Pollina SA, Karimi M, El-Beshlawy A, Hajipour M, Di Marco V, Ansari SH, Filosa A, Ricchi P, Ceci A, Daar S, Vlachaki E, Singer ST, Naserullah ZA, Pepe A, Scondotto S, Dardanoni G, Bonifazi F, Sankaran VG, Vichinsky E, Taher AT, Maggio A. Risk of mortality from anemia and iron overload in nontransfusion-dependent β-thalassemia. Am J Hematol. 2022;97(2):E78-E80. PubMed, CrossRef
  22. Mahmoud AA, Elian DM, Abd El Hady NMS, Abdallah HM, Abdelsattar S, Khalil FO, Abd El Naby SA. Assessment of Subclinical Renal Glomerular and Tubular Dysfunction in Children with Beta Thalassemia Major. Children (Basel). 2021;8(2):100. PubMed, PubMedCentral, CrossRef
  23. Karim MF, Ismail M, Hasan AM, Shekhar HU. Hematological and biochemical status of Beta-thalassemia major patients in Bangladesh: A comparative analysis. Int J Hematol Oncol Stem Cell Res. 2016;10(1):7-12. PubMed, PubMedCentral
  24. Manakeng K, Prasertphol P, Phongpao K, Chuncharunee S, Tanyong D, Worawichawong S, Svasti S, Chaichompoo P. Elevated levels of platelet- and red cell-derived extracellular vesicles in transfusion-dependent β-thalassemia/HbE patients with pulmonary arterial hypertension. Ann Hematol. 2019;98(2):281-288. PubMed, PubMedCentral, CrossRef
  25. Abd El‐Khalik SR, Sharaby RM, Nasif E, Hamza MB, Ibrahim RR. Netrin-1 and clusterin: Innovative potential diagnostic biomarkers for early renal damage in β-thalassemia major children. IUBMB Life. 2021;73(5):800-810. PubMed, CrossRef
  26. Youssry I, Makar S, Abdelkhalek K, Hisham D, Sawires H. Comparing different markers of tubular dysfunction in transfusion-dependent thalassemia patients. Int Urol Nephrol. 2022;54(2):421-428. PubMed, CrossRef
  27. Boaro MP, Biddeci G, Varotto E, Geranio G, Beqiri V, Basso G, Frizziero ML, Vida E, Putti MC. Children with Thalassemia Major Display Abnormal Renal Tubular Function. Blood. 2016;128(22):3628. CrossRef
  28. Dhefer IH. Evaluation of some electrolyte in Iraqi patients with major thalassemia in Baghdad city. Biochem Cell Arch. 2018;18(1):‏803-806.
  29. Cetinkaya PU, Azik FM, Karakus V, Huddam B, Yilmaz N. β2-Microglobulin, Neutrophil Gelatinase-Associated Lipocalin, and Endocan Values in Evaluating Renal Functions in Patients with β-Thalassemia Major. Hemoglobin. 2020;44(3):147-152. PubMed, CrossRef
  30. Bhowad S, Samant P, Seth B. Biochemical assessment of renal function and its correlation with iron overloading in different variants of thalassemia. J Appl Nat Sci. 2022;14(3):1016-1021. CrossRef
  31. Elbedewy TA, Gawaly AM, Abd El-Naby AY. Serum cystatin-C and urinary N-acetyl-β-D-glucosaminidase as biomarkers for early renal dysfunction in adult Egyptian patients with β-thalassemia major. Tanta Med J. 2015;43(1):28. CrossRef
  32. Shaalan MG, Hassan MK, Al-Shanoof HJ, Al Naama LM. Renal Dysfunction in Pediatric Patients in Iraq With β-Thalassemia Major and Intermedia. Cureus. 2022;14(9):e29183. PubMed, PubMedCentral, CrossRef
  33. Angulo IL, Covas DT, Carneiro AA, Baffa O, Elias Junior J, Vilela G. Determination of iron-overload in thalassemia by hepatic MRI and ferritin. Rev Bras Hematol Hemoter. 2008;30(6):449–452. CrossRef
  34. Khandros E, Kwiatkowski JL. Beta Thalassemia: Monitoring and New Treatment Approaches. Hematol Oncol Clin North Am. 2019;33(3):339-353.
    PubMed, CrossRef
  35. ElAlfya MS, Elsherif NH, Ebeid FSE, Ismail EAR, Ahmed KA, Darwish YW, Ibrahim AS, Elghamry IRF, Shokrey NA, Alajeil DN. Renal iron deposition by magnetic resonance imaging in pediatric β-thalassemia major patients: Relation to renal biomarkers, total body iron and chelation therapy. Eur J Radiol. 2018;103:65-70. PubMed, CrossRef
  36. Maher W, Macnab R. Regulation of fluid and electrolyte balance. Anaesth Intensive Care Med. 2018;19(5):245-248. CrossRef
  37. Mansi K, Aburjai T, AlBashtawy M, Abdel-Dayem M. Biochemical factors relevant to kidney functions among Jordanian children with beta-thalassemia major treated with deferoxamine. Int J Med Med Sci. 2013;5(8):374–379. CrossRef
  38. Al-Samarrai AH, Adaay MH, Al-Tikriti KA, Al-Anzy MM. Evaluation of some essential element levels in thalassemia major patients in Mosul district, Iraq. Saudi Med J. 2008;29(1):94-97. PubMed
  39. Langelueddecke C, Roussa E, Fenton RA, Wolff NA, Lee W-K, Thévenod F. Lipocalin-2 (24p3/neutrophil gelatinase-associated lipocalin (NGAL)) receptor is expressed in distal nephron and mediates protein endocytosis. J Biol Chem. 2012;287(1):159-169. PubMed, PubMedCentral, CrossRef
  40. Pickering JW, Endre ZH. The clinical utility of plasma neutrophil gelatinase-associated lipocalin in acute kidney injury. Blood Purif. 2013;35(4):295-302. PubMed, CrossRef
  41. Mohammed M, Mohammad J, Fathi Z, Al-Hamdany M, Alkazzaz N. Comparative evaluation of cystatin C and neutrophil gelatinase-associated lipocalin in patients with thalassemia major versus thalassemia intermedia. Pharmacia. 2021;68(4):741-746. CrossRef
  42. Karaman K, Şahin S, Geylan H, Yaşar AŞ, Çetin M, Kömüroǧlu AU, Öner AF. Evaluation of Renal Function Disorder With Urinary Neutrophil Gelatinase-associated Lipocalin Level in Patients With β-Thalassemia Major. J Pediatr Hematol Oncol. 2019;41(7):507-510. PubMed,CrossRef
  43. Fouad IZ, ElNahid MS, Youssef MF, Amroussy YM. Urinary neutrophil gelatinase-associated lipocalin as a marker of kidney injury in Egyptian patients with thalassemia. Egypt J Intern Med. 2019;31(3):343-352. CrossRef
  44. Cetinkaya PU, Azik FM, Karakus V, Huddam B, Yilmaz N. β2-Microglobulin, Neutrophil Gelatinase-Associated Lipocalin, and Endocan Values in Evaluating Renal Functions in Patients with β-Thalassemia Major. Hemoglobin. 2020;44(3):147-152. PubMed, CrossRef
  45. Roudkenar MH, Halabian R, Oodi A, Roushandeh AM, Yaghmai P, Najar MR, Amirizadeh N, Shokrgozar MA. Upregulation of neutrophil gelatinase-associated lipocalin, NGAL/Lcn2, in beta-thalassemia patients. Arch Med Res. 2008;39(4):402-407. PubMed, CrossRef
  46. Badeli H, Baghersalimi A, Eslami S, Saadat F, Rad AH, Basavand R, Papkiadeh SR, Darbandi B, Kooti W, Peluso I. Early Kidney Damage Markers after Deferasirox Treatment in Patients with Thalassemia Major: A Case-Control Study. Oxid Med Cell Longev. 2019;2019:5461617. PubMed, PubMedCentral, CrossRef
  47. Hamed EA, ElMelegy NT. Renal functions in pediatric patients with beta-thalassemia major: relation to chelation therapy: original prospective study. Ital J Pediatr. 2010;36:39. PubMed, PubMedCentral, CrossRef
  48. Behairy OG, Abd Almonaem ER, Abed NT, Abdel Haiea OM, Zakaria RM, AbdEllaty RI, Asr EH, Mansour AI, Abdelrahman AM, Elhady HA. Role of serum cystatin-C and beta-2 microglobulin as early markers of renal dysfunction in children with beta thalassemia major. Int J Nephrol Renovasc Dis. 2017;10:261-268. PubMed, PubMedCentral, CrossRef
  49. Al-Hameedawi AKJ, Al-Shawi AAA. Identification of novel mutations in β-thalassemia patients in Maysan Governorate, Iraq. Mol Biol Rep. 2023;50(4):3053-3062. PubMed, CrossRef
  50. Kacar AG, Silfeler I, Kacar A, Pekun F, Turkkan E, Adal E. Levels of beta-2 microglobulin and cystatin C in beta thalassemia major patients. J Clin Anal Med. 2015;6(3):269-273. CrossRef
  51. Sumboonnanonda A, Sanpakit K, Piyaphanee N. Renal tubule function in beta-thalassemia after hematopoietic stem cell transplantation. Pediatr Nephrol. 2009;24(1):183-187. PubMed, CrossRef
  52. Younus ZM, Alhially YAH, Bashi AYD. Evaluation of conventional renal function tests in β-thalassemia major patients in Nineveh province. Tikrit J Pharmac Sci. 2012;8(1):6-14.
  53. Voskaridou E, Terpos E, Michail S, Hantzi E, Anagnostopoulos A, Margeli A, Simirloglou D, Loukopoulos D, Papassotiriou I. Early markers of renal dysfunction in patients with sickle cell/beta-thalassemia. Kidney Int. 2006;69(11):2037-2042. PubMed, CrossRef
  54. Annayev A, Karakaş Z, Karaman S, Yalçıner A, Yılmaz A, Emre S. Glomerular and Tubular Functions in Children and Adults with Transfusion-Dependent Thalassemia. Turk J Haematol. 2018;35(1):66-70. PubMed, PubMedCentral, CrossRef
  55. Patsaoura A, Tatsi E, Margeli A, Kanavaki I, Delaporta P, Kyriakopoulou D, Kouraklis-Symeonidis A, Kattamis A, Papassotiriou I. Plasma neutrophil gelatinase-associated lipocalin levels are markedly increased in patients with non-transfusion-dependent thalassemia: Lack of association with markers of erythropoiesis, iron metabolism and renal function. Clin Biochem. 2014;47(12):1060-1064. PubMed,CrossRef
  56. Economou M, Printza N, Teli A, Tzimouli V, Tsatra I, Papachristou F, Athanassiou-Metaxa M. Renal dysfunction in patients with beta-thalassemia major receiving iron chelation therapy either with deferoxamine and deferiprone or with deferasirox. Acta Haematol. 2010;123(3):148-152. PubMed, CrossRef
  57. Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis. 2010;5:11. PubMed, PubMedCentral, CrossRef
  58. Siregar OR, Siregar RS, Lubis B. Renal function in children with β-thalassemia major treated with iron chelating agent. Indones Biomed J. 2020;12(3):214-219. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.