Ukr.Biochem.J. 2023; Volume 95, Issue 6, Nov-Dec, pp. 73-80

doi: https://doi.org/10.15407/ubj95.06.073

Cytotoxicity of dextran-graft-polyacrylamide/zinc oxide nanoparticles against doxorubicin-resistant breast cancer cells

P. A. Virych1, V. A. Chumachenko2, P. A. Virych2,
V. O. Pavlenko2, N. V. Kutsevol2

1Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology,
Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv;
2Chemistry Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine;
*e-mail: anabenasp@gmail.com

Received: 24 August 2023; Revised: 08 October 2023;
Accepted: 01 December 2023; Available on-line: 18 December 2023

The toxicity of drugs for chemotherapy and cell resistance to their action are the main obstacles in anticancer therapy. Advances in nanotechnology may offer an alternative to traditional methods of anticancer therapy and overcoming drug resistance. The study was carried out on doxorubicin-resistant MCF-7/Dox breast cancer cells and BALB/3T3 clone A31 as a model of normal fibroblasts with the use of Dextran-graft-polyacrylamide/zinc oxide (D-PAA/ZnO) nanoparticles. Cytomorphological analysis was carried out after cells staining with acridine orange. Immunocytochemical study of Ki-67, p53, Bcl-2, Bax, E-cadherin, N-cadherin, СD44 expression was done. Cytotoxicity of D-PAA/ZnO nanoparticles (EC50 = 2.2 mM) against MCF-7/Dox cancer cells but not against normal fibroblasts was demonstrated. The increased expression of proapoptotic proteins, E-cadherin, CD44 and decreased expression of proliferation-associated marker Ki-67 in cancer cells treated with D-PAA/ZnO was revealed. Cytotoxicity of D-PAA/ZnO NPs against MCF-7/Dox cancer cells can be potentially used for elaboration of new approaches to cancer treatment.

Keywords: , , , , ,


References:

  1. Baba AI, Câtoi C. Comparative Oncology. Bucharest (RO): The Publishing House of the Romanian Academy; 2007. PubMed
  2. Xu JJ, Zhang WC, Guo YW, Chen XY, Zhang YN. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv. 2022;29(1):664-678. PubMed, PubMedCentral, CrossRef
  3. Islam F, Shohag S, Uddin MJ, Islam MR, Nafady MH, Akter A, Mitra S, Roy A, Emran TB, Cavalu S. Exploring the Journey of Zinc Oxide Nanoparticles (ZnO-NPs) toward Biomedical Applications. Materials (Basel). 2022;15(6):2160. PubMed, PubMedCentral, CrossRef
  4. Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers (Basel). 2021;13(18):4570. PubMed, PubMedCentral, CrossRef
  5. Huang X, Zheng X, Xu Z, Yi C. ZnO-based nanocarriers for drug delivery application: From passive to smart strategies. Int J Pharm. 2017;534(1-2):190-194. PubMed, CrossRef
  6. Livingstone C. Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract. 2015;30(3):371-382. PubMed, CrossRef
  7. Elshama SS, Abdallah ME, Abdel-Karim RI. Zinc Oxide Nanoparticles: Therapeutic Benefits and Toxicological Hazards. Open Nanomed J. 2018;5(1):16-22. CrossRef
  8. Jin SE, Jin HE. Synthesis, Characterization, and Three-Dimensional Structure Generation of Zinc Oxide-Based Nanomedicine for Biomedical Applications. Pharmaceutics. 2019;11(11):575. PubMed, PubMedCentral, CrossRef
  9. Sharma H, Kumar K, Choudhary C, Mishra PK, Vaidya B. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif Cells Nanomed Biotechnol. 2016;44(2):672-679. PubMed, CrossRef
  10. Jiang J, Pi J, Cai J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg Chem Appl. 2018:2018:1062562. PubMed, PubMedCentral, CrossRef
  11. Tripathy N, Ahmad R, Ko HA, Khang G, Hahn YB. Enhanced anticancer potency using an acid-responsive ZnO-incorporated liposomal drug-delivery system. Nanoscale. 2015;7(9):4088-4096. PubMed, CrossRef
  12. Liao C, Jin Y, Li Y, Tjong SC. Interactions of Zinc Oxide Nanostructures with Mammalian Cells: Cytotoxicity and Photocatalytic Toxicity. Int J Mol Sci. 2020;21(17):6305. PubMed, PubMedCentral, CrossRef
  13. Ponnamma D, Cabibihan JJ, Rajan M, Pethaiah SS, Deshmukh K, Gogoi JP, Pasha SK, Ahamed MB, Krishnegowda J, Chandrashekar BN, Polu AR, Cheng C. Synthesis, optimization and applications of ZnO/polymer nanocomposites. Mater Sci Eng C Mater Biol Appl. 2019;98:1210-1240. PubMed, CrossRef
  14. Yeshchenko OA, Kutsevol NV, Tomchuk AV, Khort PS, Virych PA, Chumachenko VA, Kuziv YI, Naumenko AP, Marinin AI. Plasmonic enhancement of the antibacterial photodynamic efficiency of a zinc tetraphenylporphyrin photosensitizer/dextran graft polyacrylamide anionic copolymer/Au nanoparticles hybrid nanosystem. RSC Adv. 2021;12(1):11-23. PubMed, PubMedCentral, CrossRef
  15. Yurchenko A, Nikitina N, Sokolova V, Prylutska S, Kuziv Y, Virych P, Chumachenko V, Kutsevol N, Ponomarenko S, Prylutskyy Yu, Epple M. A Novel Branched Copolymer-Containing Anticancer Drug for Targeted Therapy: In Vitro Research. BioNanoScience. 2019;10(1):249-259. CrossRef
  16. Kutsevol N, Kuziv Y, Bezugla T, Virych P, Marynin A, Borikun T, Lukianova N, Virych P, Chekhun V. Application of new multicomponent nanosystems for overcoming doxorubicin resistance in breast cancer therapy. Appl Nanosci. 2021;12(3):427-437. CrossRef
  17. Virych PA, Zadvorniy TV, Borikun TV, Lykhova OO, Chumachenko VA, Virych PA, Kutsevol NV, Lukianova NYu. Effects of dextran-graft-polyacrylamide/ZnO nanoparticles on prostate cancer cell lines in vitro. Exp Oncol. 2022;44(3):217-221. PubMed, CrossRef
  18. Chumachenko V, Virych P, Nie G, Virych P, Yeshchenko O, Khort P, Tkachenko A, Prokopiuk V, Lukianova N, Zadvornyi T, Rawiso M, Ding L, Kutsevol N. Combined Dextran-Graft-Polyacrylamide/Zinc Oxide Nanocarrier for Effective Anticancer Therapy in vitro. Int J Nanomedicine. 2023;18:4821-4838. PubMed, PubMedCentral, CrossRef
  19. Chumachenko V, Kutsevol N, Rawiso M, Schmutz M, Blanck C. In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents. Nanoscale Res Lett. 2014;9(1):164. PubMed, PubMedCentral, CrossRef
  20. Kutsevol N, Chumachenko V, Rawiso M, Shyichuk A. Green synthesis of silver nanoparticles using dextran-graft-polyacrylamide as template. Micro Nano Letters. 2016;11(5):256-259. CrossRef
  21. Kutsevol N, Bezugla T, Bezuglyi M, Rawiso M. Branched Dextran-graft-Polyacrylamide Copolymers as Perspective Materials for Nanotechnology. Macromol Symp. 2012;317-318(1):82-90.
  22. Schindler M. Theory of synergistic effects: Hill-type response surfaces as ‘null-interaction’ models for mixtures. Theor Biol Med Model. 2017;14(1):15. PubMed, PubMedCentral, CrossRef
  23. McClelland RA, Wilson D, Leake R, Finlay P, Nicholson RI. A multicentre study into the reliability of steroid receptor immunocytochemical assay quantification. British Quality Control Group. Eur J Cancer. 1991;27(6):711-715. PubMed, CrossRef
  24. Chernykh M, Zavalny D, Sokolova V, Ponomarenko S, Prylutska S, Kuziv Y, Chumachenko V, Marynin A, Kutsevol N, Epple M, Ritter U, Piosik J, Prylutskyy Y, Ritter U. A New Water-Soluble Thermosensitive Star-Like Copolymer as a Promising Carrier of the Chemotherapeutic Drug Doxorubicin. Materials (Basel). 2021;14(13):3517. PubMed, PubMedCentral, CrossRef
  25. Kutsevol N, Kuziv Y, Bezugla T, Chumachenko V, Chekhun V. Multicomponent Nanocomposites for Complex Anticancer Therapy: Effect of Aggregation Processes on Their Efficacy. Int J Polym Sci. 2020;2020:1-7. CrossRef
  26. Grebinyk A, Prylutska S, Grebinyk S, Ponomarenko S, Virych P, Chumachenko V, Kutsevol N, Prylutskyy Y, Ritter U, Frohme M. Drug delivery with a pH-sensitive star-like dextran-graft polyacrylamide copolymer. Nanoscale Adv. 2022;4(23):5077-5088. PubMed, PubMedCentral, CrossRef
  27. Chen C, Lu L, Yan S, Yi H, Yao H, Wu D, He G, Tao X, Deng X. Autophagy and doxorubicin resistance in cancer. Anticancer Drugs. 2018;29(1):1-9. PubMed, CrossRef
  28. Wen SH, Su SC, Liou BH, Lin CH, Lee KR. Sulbactam-enhanced cytotoxicity of doxorubicin in breast cancer cells. Cancer Cell Int. 2018;18:128. PubMed, PubMedCentral, CrossRef
  29. Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers (Basel). 2021;13(18):4570. PubMed, PubMedCentral, CrossRef
  30. Sirelkhatim A, Mahmud S, Seeni A, Kaus NH. Preferential cytotoxicity of ZnO nanoparticle towards cervical cancer cells induced by ROS-mediated apoptosis and cell cycle arrest for cancer therapy. J Nanoparticle Res. 2016;18:219. CrossRef
  31. Chandrasekaran M, Pandurangan M. In Vitro Selective Anti-Proliferative Effect of Zinc Oxide Nanoparticles Against Co-Cultured C2C12 Myoblastoma Cancer and 3T3-L1 Normal Cells. Biol Trace Elem Res. 2016;172(1):148-154. PubMed, CrossRef
  32. Samutprasert P, Chiablaem K, Teeraseranee C, Phaiyarin P, Pukfukdee P, Pienpinijtham P, Svasti J, Palaga T, Lirdprapamongkol K, Wanichwecharungruang S. Epigallocatechin gallate-zinc oxide co-crystalline nanoparticles as an anticancer drug that is non-toxic to normal cells. RSC Adv. 2018;8(14):7369-7376. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.