Ukr.Biochem.J. 2023; Volume 95, Issue 6, Nov-Dec, pp. 5-20
doi: https://doi.org/10.15407/ubj95.06.005
Thiacalix[4]arene С-1087 is the selective inhibitor of the calcium pump of smooth muscle cells plasma membrane
Т. О. Veklich1*, R. V. Rodik2, О. V. Tsymbalyuk3,
О. V. Shkrabak1, O. V. Maliuk1, S. O. Karakhim1,
S. H. Vyshnevskyi3, V. І. Kalchenko3, S. O. Kosterin1
1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
*e-mail: veklich@biochem.kiev.ua;
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv;
3Educational and Scientific Institute of High Technologies,
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine;
Received: 01 September 2023; Revised: 23 October 2023;
Accepted: 01 December 2023; Available on-line: 18 December 2023
The enzymatic and kinetic analyses were used to demonstrate that 5,11,17,23-tetra(trifluoro)methyl(phenylsulfonylimino)methylamino-25,27-dihexyloxy-26,28-dihydroxythiacalix[4]arene С-1087 effectively inhibited the Са2+,Mg2+-АТРase activity of the rat myometrium cells plasma membrane (І0.5 = 9.4 ± 0.6 µM) with no effect on the relative activity of other membrane ATPases. With the use of confocal microscopy and Ca2+-sensitive fluorescent probe fluo-4, it was shown that the application of thiacalix[4]arene С-1087 to the immobilized uterus myocytes increased the cytosolic concentration of Ca2+. Tenzometric studies of rat uterus smooth muscles with the subsequent mechanokinetic analysis revealed that thiacalix[4]arene С-1087 considerably decreased the maximal velocity of the relaxation of both spontaneous contractile response and contraction induced by hyperpotassium solution.
Keywords: contraction-relaxation mechanokinetics, cytosolic Ca(2+), myometrium, plasma membrane Са(2+)‚Mg(2+)-АТРase, smooth muscle cell, thiacalix[4]arene
References:
- Wray S. Insights from physiology into myometrial function and dysfunction. Exp Physiol. 2015;100(12):1468-1476. PubMed, CrossRef
- Kosterin SO, Babich LG, Shlykov SG, Danylovych IuV, Veklich ТО, Mazur YuYu. Biochemical properties and regulation of smooth muscle cell Са2+-transporting systems. K.: Science opinion, 2016. 210 р.
- Noble D, Herchuelz A. Role of Na/Ca exchange and the plasma membrane Ca2+-ATPase in cell function. EMBO Rep. 2007;8(3):228-232. PubMed, PubMedCentral, CrossRef
- Futai M, Wada Y, Kaplan J. Catalytic and transport mechanism of the sarco-(endo)plasmic reticulum Ca2+-ATPase (SERCA). Handbook of ATPases: biochemistry, cell biology, pathophysiology. Ed. John Wiley & Sons. – Weinheim: Wiley-VCH, 2004; 63-84.
- Karaki H, Ozaki H, Hori M, Mitsui-Saito M, Amano K, Harada K, Miyamoto S, Nakazawa H, Won KJ, Sato K. Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev. 1997;49(2):157-230. PubMed
- Brini M, Carafoli E. The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol. 2011;3(2):a004168. PubMed, PubMedCentral, CrossRef
- Sanborn BM. Hormonal signaling and signal pathway crosstalk in the control of myometrial calcium dynamics. Semin Cell Dev Biol. 2007;18(3):305-314. PubMed, PubMedCentral, CrossRef
- Penniston JT, Enyedi A. Modulation of the plasma membrane Ca2+ pump. J Membr Biol. 1998;165(2):101-109. PubMed, CrossRef
- Liu L, Ishida Y, Okunade G, Shull GE, Paul RJ. Role of plasma membrane Ca2+-ATPase in contraction-relaxation processes of the bladder: evidence from PMCA gene-ablated mice. Am J Physiol Cell Physiol. 2006;290(4):C1239-C1247. PubMed, CrossRef
- Cartwright EJ, Oceandy D, Austin C, Neyses L. Ca2+ signalling in cardiovascular disease: the role of the plasma membrane calcium pumps. Sci China Life Sci. 2011;54(8):691-698. PubMed, CrossRef
- Brini M. Plasma membrane Ca(2+)-ATPase: from a housekeeping function to a versatile signaling role. Pflugers Arch. 2009;457(3):657-664. PubMed, CrossRef
- Liu L, Ishida Y, Okunade G, Pyne-Geithman GJ, Shull GE, Paul RJ. Distinct roles of PMCA isoforms in Ca2+ homeostasis of bladder smooth muscle: evidence from PMCA gene-ablated mice. Am J Physiol Cell Physiol. 2007;292(1):C423-C431. PubMed, CrossRef
- Uterine contractility. Ed. by R.E. Garfield – Serano Symposia, VSA, Norwell, Massachusetts, 1990. 388 p.
- Hertelendy F, Zakar T. Regulation of myometrial smooth muscle functions. Curr Pharm Des. 2004;10(20):2499-2517. PubMed, CrossRef
- Calixarenes in the Nanoworld. Ed. by Vicens J, Harrowfield J, Baklouti L. Springer, Dordrecht, The Netherlands, 2007. 395 p. CrossRef
- Calixarenes and Beyond. Ed. by Neri P, Sessler JL, Wang MX. Springer International Publishing, Switzerland, 2016. 1062 p. CrossRef
- Español ES, Villamil MM. Calixarenes: Generalities and Their Role in Improving the Solubility, Biocompatibility, Stability, Bioavailability, Detection, and Transport of Biomolecules. Biomolecules. 2019;9(3):90. PubMed, PubMedCentral, CrossRef
- Rodik RV, Boyko VI, Kalchenko VI. Calixarenes in biotechnology and bio-medical researches. Front Med Chem. Eds. Atta-ur-Rahman, Choudhary MI, Reitz AB. Bentham Science Publishers. 2016;8:206–301. CrossRef
- Pan YC, Hu XY, Guo DS. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angew Chem Int Ed Engl. 2021;60(6):2768-2794. PubMed, CrossRef
- Fan X, Guo X. Development of calixarene-based drug nanocarriers. J Mol Liquids. 2021;325:115246. CrossRef
- Coleman AW, Jebors S, Cecillon S, Perret P, Garin D, Marti-Battle D, Moulin M. Toxicity and biodistribution of para-sulfonato-calix[4]arene in mice. New J Chem. 2008;32:780-782. CrossRef
- Kosterin SO, Kalchenko VI, Veklich ТО, Babich LG, Shlykov SG. Calixarenes as modulators of ATP-hydrilizing systems of smooth muscles. K.: Science opinion, 2019. 256 р.
- Rassukana YV, Onys’ko PP, Grechukha AG, Sinitsa AD. N-(Arylsulfonyl)trihaloacetimidoyl Chlorides and Their Reactions with Phosphites. Eur J Org Chem. 2003;2003(21):4181-4186. CrossRef
- Veklich ТО, Kosterin SO. Comparative study of properties of Na+, K+-ATPase and Mg2+-ATPase of the myometrium plasma membrane. Ukr Biokhim Zhurn. 2005;77(2):66-75. (In Ukrainian). PubMed
- Kondratiuk ТP, Bychenok SF, Prishchepa АА, Babich LG, Kurskiy MD. Isolation and characteristics of the plasma membrane fraction from the swine myometrium. Ukr Biokhim Zhurn. 1986;58(4):50-56. (In Russian). PubMed
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254. PubMed, CrossRef
- Mollard P, Mironneau J, Amedee T, Mironneau C. Electrophysiological characterization of single pregnant rat myometrial cells in short-term primary culture. Am J Physiol. 1986;250(1):C47-C54. PubMed, CrossRef
- Rathbun WB, Betlach MV. Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Anal Biochem. 1969;28(1):436-445. PubMed, CrossRef
- Veklich TO, Shkrabak OA, Nikonishyna YuV, Rodik RV, Kalchenko VI, Kosterin SO. Calix[4]arene С-956 selectively inhibits plasma membrane Са(2+),Mg(2+)-АТРase in myometrial cells. Ukr Biochem J. 2018;90(5):34-42. CrossRef
- Magocsi M, Penniston JT. Ca2+ or Mg2+ nucleotide phosphohydrolases in myometrium: two ecto-enzymes. Biochim Biophys Acta. 1991;1070(1):163-172. PubMed, CrossRef
- Amédée T, Mironneau C, Mironneau J. Isolation and contractile responses of single pregnant rat myometrial cells in short-term primary culture and the effects of pharmacological and electrical stimuli. Br J Pharmacol. 1986;88(4):873-880. PubMed, PubMedCentral, CrossRef
- Kosterin S, Tsymbalyuk O, Holden O. Multiparameter analysis of mechanokinetics of the contractile response of visceral smooth muscles. Series on Biomechanics. 2021;35(1):14-30. Burdyga TV, Kosterin SA. Kinetic analysis of smooth muscle relaxation. Gen Physiol Biophys. 1991;10(6):589-598. PubMed
- Burdyga TV, Kosterin SA. Kinetic analysis of smooth muscle relaxation. Gen Physiol Biophys. 1991;10(6):589-598. PubMed
- Iki N, Narumi F, Fujimoto T, Morohashi N, Miyano S. Selective synthesis of three conformational isomers of tetrakis[(ethoxycarbonyl)methoxy]thiacalix[4]arene and their complexation properties towards alkali metal ions. J Chem Soc Perkin Trans 2. 1998;(12):2745-2750. CrossRef
- Lang J, Dvořáková H, Bartošová I, Lhotak P, Stibor I, Hrabal R. Conformational flexibility of a novel tetraethylether of thiacalix[4]arene. A comparison with the “classical” methylene-bridged compounds. Tetrahedron Lett. 1999;40(2):373-376. CrossRef
- Kasyan O, Healey ER, Drapailo A, Zaworotko M, Cecillon S, Coleman AW, Kalchenko V. Synthesis, Structure and Selective Upper Rim Functionalization of Long Chained Alkoxythiacalix[4]arenes. J Incl Phenom Macrocycl Chem. 2007;58:127–132. CrossRef
- Veklich TO, Shkrabak OA, Nikonishyna YuV, Rodik RV, Kalchenko VI, Kosterin SO. Calix[4]arene C-90 as a promising supramolecular compound to regulate the activity of plasma membrane Ca2+,Mg2+-ATPase of smooth muscle cells. Nanosist Nanomater Nanotehnol. 2017;15(2):373-380. (In Ukrainian).
- Danylovych IuV, Chunikhin OIu, Danylovich HV. Investigation of the changes in uterine myocytes size depending on contractile activity modulators by photon correlation spectroscopy. Fiziol Zh. 2013;59(1):32-39. (In Ukrainian). PubMed
- Tsymbalyuk OV, Kosterin SO. Influence of calixarene С-90 jn contractile activity of rat myometrium smooth muscles. Studia Biologica. 2013;7(3):87-98. CrossRef
- symbalyuk OV. Kinetics of relaxation of rat myometrium in conditions of inhibition of plasma membrane calcium pump and systems of active Са2+ transport of intracellular Са2+-depot. Studia Biologica. 2018;12(2):3-12. CrossRef
- Ishida Y, Paul RJ. Ca2+ clearance in smooth muscle: lessons from gene-altered mice. J Smooth Muscle Res. 2005;41(5):235-245. PubMed, CrossRef
This work is licensed under a Creative Commons Attribution 4.0 International License.