Ukr.Biochem.J. 2024; Volume 96, Issue 1, Jan-Feb, pp. 37-48
doi: https://doi.org/10.15407/ubj96.01.037
Multiple effects of angiostatins in injured cornea
V. L. Bilous*, A. O. Tykhomyrov
Department of Enzyme Chemistry and Biochemistry, Palladin Institute of Biochemistry,
National Academy of Sciences of Ukraine, Kyiv;
*e-mail: basil.bilous@gmail.com
Received: 07 October 2023; Revised: 01 November 2023;
Accepted: 01 February 2024; Available on-line: 26 February 2024
Prolonged inflammation and excessive neovascularization of the cornea due to severe injury can impair optical clarity and lead to vision impairment. Plasminogen kringle (K) fragments, known as angiostatins (AS), play a well-established role as inhibitors of neovascularization by suppressing pro-angiogenic signaling. However, AS effects in the cornea, beyond inhibiting the angiogenesis, are still unexplored. In this study, we estimate the protective effect of two AS variants (K1-3 and K5) against alkali burn injury induced in rabbit and rat corneas. AS K1-3 in the single doses of 0.075 or 0.75 μg (0.1 or 1.0 μM, respectively) or 0.3 μg of AS K5 (1.0 μM) were applied locally as eye drops daily for 14 days after the injury. A significant regression of corneal vessels in-growth in injured eyes treated with AS was revealed. Western blot analysis of corneal tissue lysates revealed that injury-induced overexpression of protein markers of hypoxia (HIF-1α), angiogenesis (VEGF), tissue remodeling and fibrosis (MMP-9), autophagy (beclin-1) and endoplasmic reticulum stress (GRP-78) was significantly reduced under AS treatment. Besides, the level of tight junctions protein ZO-1 was shown to be up-regulated after the treatment of the damaged cornea with AS K1-3. Summarizing, our study uncovered novel biological functions of the kringle-containing plasminogen fragments indicating its beneficial effects during corneal healing in the experimental model of alkali burn. The data obtained can be helpful for the development of novel efficient formulations to manage complications of ocular surface injuries.
Keywords: alkali burn, angiostatins, beclin-1, cornea, HIF-1α, MMP-9, neovascularization, VEGF, ZO-1
References:
- He Y, Ma BS, Zeng JH, Ma DJ. Corneal optical density: Structural basis, measurements, influencing factors, and roles in refractive surgery. Front Bioeng Biotechnol. 2023;11:1144455. PubMed, PubMedCentral, CrossRef
- Barrientez B, Nicholas SE, Whelchel A, Sharif R, Hjortdal J, Karamichos D. Corneal injury: Clinical and molecular aspects. Exp Eye Res. 2019;186:107709. PubMed, PubMedCentral, CrossRef
- Sharif Z, Sharif W. Corneal neovascularization: updates on pathophysiology, investigations & management. Rom J Ophthalmol. 2019;63(1):15-22. PubMed, PubMedCentral, CrossRef
- Peral A, Mateo J, Domínguez-Godínez CO, Carracedo G, Gómez JA, Crooke A, Pintor J. Therapeutic potential of topical administration of siRNAs against HIF-1α for corneal neovascularization. Exp Eye Res. 2022;219:109036. PubMed, CrossRef
- Caban M, Owczarek K, Lewandowska U. The Role of Metalloproteinases and Their Tissue Inhibitors on Ocular Diseases: Focusing on Potential Mechanisms. Int J Mol Sci. 2022;23(8):4256. PubMed, PubMedCentral, CrossRef
- Guindolet D, Woodward AM, Gabison EE, Argüeso P. Alleviation of Endoplasmic Reticulum Stress Enhances Human Corneal Epithelial Cell Viability under Hyperosmotic Conditions. Int J Mol Sci. 2022;23(9):4528. PubMed, PubMedCentral, CrossRef
- Frost LS, Mitchell CH, Boesze-Battaglia K. Autophagy in the eye: implications for ocular cell health. Exp Eye Res. 2014;124:56-66. PubMed, PubMedCentral, CrossRef
- Lee J, Jung E, Heur M. Injury induces endothelial to mesenchymal transition in the mouse corneal endothelium in vivo via FGF2. Mol Vis. 2019;25:22-34. PubMed, PubMedCentral
- Castro-Muñozledo F, Meza-Aguilar DG, Domínguez-Castillo R, Hernández-Zequinely V, Sánchez-Guzmán E. Vimentin as a Marker of Early Differentiating, Highly Motile Corneal Epithelial Cells. J Cell Physiol. 2017;232(4):818-830. PubMed, CrossRef
- Wongvisavavit R, Parekh M, Ahmad S, Daniels JT. Challenges in corneal endothelial cell culture. Regen Med. 2021;16(9):871-891. PubMed, PubMedCentral, CrossRef
- Vaidyanathan U, Hopping GC, Liu HY, Somani AN, Ronquillo YC, Hoopes PC, Moshirfar M. Persistent Corneal Epithelial Defects: A Review Article. Med Hypothesis Discov Innov Ophthalmol. 2019;8(3):163-176. PubMed, PubMedCentral
- Bilous VL, Kapustianenko LG, Tykhomyrov AA. Production and application of angiostatins for the treatment of ocular neovascular diseases. Biotechnol Acta. 2021;14(1): 5-24. CrossRef
- Wahl ML, Kenan DJ, Gonzalez-Gronow M, Pizzo SV. Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated. J Cell Biochem. 2005;96(2):242-261. PubMed, CrossRef
- O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994;79(2):315-328. PubMed, CrossRef
- Hiramoto K, Yamate Y. Tranexamic acid reduces endometrial cancer effects through the production of angiostatin. J Cancer. 2022;13(5):1603-1610. PubMed, PubMedCentral, CrossRef
- Mok CC, Soliman S, Ho LY, Mohamed FA, Mohamed FI, Mohan C. Urinary angiostatin, CXCL4 and VCAM-1 as biomarkers of lupus nephritis. Arthritis Res Ther. 2018;20(1):6. PubMed, PubMedCentral, CrossRef
- Guzyk MM, Tykhomyrov AA, Nedzvetsky VS, Prischepa IV, Grinenko TV, Yanitska LV, Kuchmerovska TM. Poly(ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors Reduce Reactive Gliosis and Improve Angiostatin Levels in Retina of Diabetic Rats. Neurochem Res. 2016;41(10):2526-2537. PubMed, CrossRef
- Chang PC, Wu HL, Lin HC, Wang KC, Shi GY. Human plasminogen kringle 1-5 reduces atherosclerosis and neointima formation in mice by suppressing the inflammatory signaling pathway. J Thromb Haemost. 2010;8(1):194-201. PubMed, CrossRef
- Chavakis T, Athanasopoulos A, Rhee JS, Orlova V, Schmidt-Wöll T, Bierhaus A, May AE, Celik I, Nawroth PP, Preissner KT. Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood. 2005;105(3):1036-1043. PubMed, CrossRef
- Coppini LP, Visniauskas B, Costa EF, Filho MN, Rodrigues EB, Chagas JR, Farah ME, Barros NM, Carmona AK. Corneal angiogenesis modulation by cysteine cathepsins: In vitro and in vivo studies. Exp Eye Res. 2015;134:39-46. PubMed, CrossRef
- Feizi S, Azari AA, Safapour S. Therapeutic approaches for corneal neovascularization. Eye Vis (Lond). 2017;4:28. PubMed, PubMedCentral, CrossRef
- Ambati BK, Joussen AM, Ambati J, Moromizato Y, Guha C, Javaherian K, Gillies S, O’Reilly MS, Adamis AP. Angiostatin inhibits and regresses corneal neovascularization. Arch Ophthalmol. 2002;120(8):1063-1068. PubMed, CrossRef
- Gabison E, Chang JH, Hernández-Quintela E, Javier J, Lu PC, Ye H, Kure T, Kato T, Azar DT. Anti-angiogenic role of angiostatin during corneal wound healing. Exp Eye Res. 2004;78(3):579-589. PubMed, CrossRef
- Villabona-Martinez V, Sampaio LP, Shiju TM, Wilson SE. Standardization of corneal alkali burn methodology in rabbits. Exp Eye Res. 2023;230:109443. PubMed, PubMedCentral, CrossRef
- Deutsch DG, Mertz ET. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970;170(3962):1095-1096. PubMed, CrossRef
- Tykhomyrov AA, Yusova EI, Diordieva SI, Corsa VV, Grinenko TV. Production and characteristics of antibodies against K1-3 fragment of human plasminogen. Biotechnol Acta. 2013;6(1):86-96. CrossRef
- Kapustianenko LG. Polyclonal antibodies against human plasminogen kringle 5. Biotechnol Acta. 2017;10(3):41-49. CrossRef
- Lantyer-Araujo NL, Lacerda AJ, Mendonça MA, da Silva APSM, Dórea Neto FA, Portela RD, Oriá AP. Rabbit as an Animal Model for Ocular Surface Disease, Tear Osmolarity, Electrolyte, and Tear Ferning Profiles. Optom Vis Sci. 2020;97(10):847-851. PubMed, CrossRef
- Gronkiewicz KM, Giuliano EA, Kuroki K, Bunyak F, Sharma A, Teixeira LB, Hamm CW, Mohan RR. Development of a novel in vivo corneal fibrosis model in the dog. Exp Eye Res. 2016;143:75-88. PubMed, PubMedCentral, CrossRef
- Downie LE, Keller PR, Vingrys AJ. Assessing ocular bulbar redness: a comparison of methods. Ophthalmic Physiol Opt. 2016;36(2):132-139.
PubMed, CrossRef - Goldring JPD. Measuring Protein Concentration with Absorbance, Lowry, Bradford Coomassie Blue, or the Smith Bicinchoninic Acid Assay Before Electrophoresis. Methods Mol Biol. 2019;1855:31-39. PubMed, CrossRef
- Sprogyte L, Park M, Di Girolamo N. Pathogenesis of Alkali Injury-Induced Limbal Stem Cell Deficiency: A Literature Survey of Animal Models. Cells. 2023;12(9):1294. PubMed, PubMedCentral, CrossRef
- Keragala CB, Medcalf RL. Plasminogen: an enigmatic zymogen. Blood. 2021;137(21):2881-2889. PubMed, CrossRef
- Geiger JH, Cnudde SE. What the structure of angiostatin may tell us about its mechanism of action. J Thromb Haemost. 2004;2(1):23-34. PubMed, CrossRef
- Zhang SX, Sima J, Shao C, Fant J, Chen Y, Rohrer B, Gao G, Ma JX. Plasminogen kringle 5 reduces vascular leakage in the retina in rat models of oxygen-induced retinopathy and diabetes. Diabetologia. 2004;47(1):124-131. PubMed, CrossRef
- Sack RA, Beaton AR, Sathe S. Diurnal variations in angiostatin in human tear fluid: a possible role in prevention of corneal neovascularization. Curr Eye Res. 1999;18(3):186-193. PubMed, CrossRef
- Gavrylyak I, Greben N, Bilous V, Korsa V, Zhaboiedov D, Ağca C, Tykhomyrov A. The levels of hypoxia- and angiogenesis-related regulators and matrix metalloproteinase 9 activity in tear fluid of patients with non-penetrating ocular traumas. Med Perspekt. 2022;27(4):168-176. CrossRef
- Perri SR, Annabi B, Galipeau J. Angiostatin inhibits monocyte/macrophage migration via disruption of actin cytoskeleton. FASEB J. 2007;21(14):3928-3936. PubMed, CrossRef
- Hadrian K, Willenborg S, Bock F, Cursiefen C, Eming SA, Hos D. Macrophage-Mediated Tissue Vascularization: Similarities and Differences Between Cornea and Skin. Front Immunol. 2021;12:667830. PubMed, PubMedCentral, CrossRef
- Di Zazzo A, Gaudenzi D, Yin J, Coassin M, Fernandes M, Dana R, Bonini S. Corneal angiogenic privilege and its failure. Exp Eye Res. 2021;204:108457. PubMed, CrossRef
- Ramakrishnan S, Anand V, Roy S. Vascular endothelial growth factor signaling in hypoxia and inflammation. J Neuroimmune Pharmacol. 2014;9(2):142-160. PubMed, PubMedCentral, CrossRef
- Di Zazzo A, Lee SM, Sung J, Niutta M, Coassin M, Mashaghi A, Inomata T. Variable responses to corneal grafts: insights from immunology and systems biology. J Clin Med. 2020;9(2):586. PubMed, PubMedCentral, CrossRef
- Droho S, Thomson BR, Makinde HM, Cuda CM, Perlman H, Lavine JA. Ocular macrophage origin and heterogeneity during steady state and experimental choroidal neovascularization. J Neuroinflammation. 2020;17(1):341. PubMed, PubMedCentral, CrossRef
- Fu YC, Xin ZM. Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1α. Biosci Rep. 2019;39(1):BSR20180552. PubMed, PubMedCentral, CrossRef
- Park GW, Heo J, Kang JY, Yang JW, Kim JS, Kwon KD, Yu BC, Lee SJ. Topical cell-free conditioned media harvested from adipose tissue-derived stem cells promote recovery from corneal epithelial defects caused by chemical burns. Sci Rep. 2020;10(1):12448. PubMed, PubMedCentral, CrossRef
- Yanai R, Ko JA, Nomi N, Morishige N, Chikama T, Hattori A, Hozumi K, Nomizu M, Nishida T. Upregulation of ZO-1 in cultured human corneal epithelial cells by a peptide (PHSRN) corresponding to the second cell-binding site of fibronectin. Invest Ophthalmol Vis Sci. 2009;50(6):2757-2764. PubMed, CrossRef
- Das SK, Gupta I, Cho YK, Zhang X, Uehara H, Muddana SK, Bernhisel AA, Archer B, Ambati BK. Vimentin knockdown decreases corneal opacity. Invest Ophthalmol Vis Sci. 2014;55(7):4030-4040. PubMed, PubMedCentral, CrossRef
- Kempuraj D, Mohan RR. Autophagy in Extracellular Matrix and Wound Healing Modulation in the Cornea. Biomedicines. 2022;10(2):339. PubMed, PubMedCentral, CrossRef
- Ayilam Ramachandran R, Sanches JM, Robertson DM. The roles of autophagy and mitophagy in corneal pathology: current knowledge and future perspectives. Front Med (Lausanne). 2023;10:1064938. PubMed, PubMedCentral, CrossRef
- Tran S, Fairlie WD, Lee EF. BECLIN1: Protein structure, function and regulation. Cells. 2021;10(6):1522. PubMed, PubMedCentral, CrossRef
- Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):352. PubMed, PubMedCentral, CrossRef
- Mohlin C, Taylor L, Ghosh F, Johansson K. Autophagy and ER-stress contribute to photoreceptor degeneration in cultured adult porcine retina. Brain Res. 2014;1585:167-183. PubMed, CrossRef
- Chen C, Zhang B, Xue J, Li Z, Dou S, Chen H, Wang Q, Qu M, Wang H, Zhang Y, Wan L, Zhou Q, Xie L. Pathogenic role of endoplasmic reticulum stress in diabetic corneal endothelial dysfunction. Invest Ophthalmol Vis Sci. 2022;63(3):4. PubMed, PubMedCentral, CrossRef
- Liu Z, Liu G, Ha DP, Wang J, Xiong M, Lee AS. ER chaperone GRP78/BiP translocates to the nucleus under stress and acts as a transcriptional regulator. Proc Natl Acad Sci USA. 2023;120(31):e2303448120. PubMed, PubMedCentral, CrossRef
- Chipurupalli S, Samavedam U, Robinson N. Crosstalk between ER stress, autophagy and inflammation. Front Med (Lausanne). 2021;8:758311. PubMed, PubMedCentral, CrossRef
- Bachmann B, Taylor RS, Cursiefen C. Corneal neovascularization as a risk factor for graft failure and rejection after keratoplasty: an evidence-based meta-analysis. Ophthalmology. 2010;117(7):1300-1305.e7. PubMed, CrossRef
This work is licensed under a Creative Commons Attribution 4.0 International License.







