Ukr.Biochem.J. 2024; Volume 96, Issue 2, Mar-Apr, pp. 62-74


Circulating levels of potential markers of ischemic stroke in patients with the different forms of atrial fibrillation and chronic heart failure

A. O. Tykhomyrov1*, O. Yu. Sirenko2, O. V. Kuryata2

1Department of Enzyme Chemistry and Biochemistry,
Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine;
2Department of Internal Medicine 2, Phthisiology,
Occupational Diseases and Clinical Immunology, Dnipro State Medical University, Dnipro, Ukraine;

Received: 19 January 2024; Revised: 13 March 2024;
Accepted: 17 March 2024; Available on-line: 30 April 2024

Atrial fibrillation (AF) is the most common abnormal type of heart rhythm (cardiac arrhythmia), which is considered the leading cause of stroke. There have been limited studies on the prognostic markers for atrial disease and AF-associated ischemic stroke, despite the high demand for this procedure in daily clinical practice to monitor disease course and assess risk of stroke in patients with AF and chronic heart failure (CHF). Thus, the aim of the present study was to evaluate the levels of serum biomarkers related to ischemic stroke in CHF patients with the different forms of AF. Forty-six patients with various types of AF (paroxysmal, persistent and permanent) with or without ischemic stroke were enrolled in the study, 36 clinically healthy donors served as a control. The levels of inducible nitric oxide synthase (iNOS), vascular endothelial growth factor (VEGF) and angiostatins (AS) were evaluated by western blot analysis in the serum. The levels of active matrix metalloproteinases (MMPs) were analysed by gelatin zymography. Elevated levels of iNOS were shown in patients with all AF forms as compared with control, but iNOS levels in post-ischemic patients were significantly higher than that in paroxysmal AF individuals. However, the levels of VEGF and AS did not differ from the baseline value in patients with paroxysmal AF, while dramatic increase of their contents was shown in post-stroke patients with persistent and permanent types of AF. Elevated active MMP-9 levels were shown to be associated with the diagnosis of all AF forms, regardless of the occurrence of stroke. Taken together, our findings­ demonstrate that tested proteins can be considered as valuable biomarkers of AF forms transformation and potentially useful for ischemic stroke risk stratification in patients with AF and CHF. Observed changes in regulatory protein levels may expand our understanding of pathological roles of endothelial function dysregulation, disrupted angiogenesis balance and abnormal tissue remodeling in AF and associated ischemic events.

Keywords: , , , , , ,


  1. Trohman RG, Huang HD, Sharma PS. Atrial fibrillation: primary prevention, secondary prevention, and prevention of thromboembolic complications: part 1. Front Cardiovasc Med. 2023;10:1060030. PubMed, PubMedCentral, CrossRef
  2. Shukla A, Curtis AB. Avoiding permanent atrial fibrillation: treatment approaches to prevent disease progression. Vasc Health Risk Manag. 2014;10:1-12. PubMed, PubMedCentral, CrossRef
  3. Botto GL, Tortora G, Casale MC, Canevese FL, Brasca FAM. Impact of the Pattern of Atrial Fibrillation on Stroke Risk and Mortality. Arrhythm Electrophysiol Rev. 2021;10(2):68-76. PubMed, PubMedCentral, CrossRef
  4. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE, Fauchier L, Filippatos G, Kalman JM, La Meir M, Lanev, Lebeau JP, Lettino M, Lip GYH, Pinto FJ, Thomas GN, Valgimigli M, Van Gelder IC, Van Putte BP, Watkins CL. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373-498. PubMed, CrossRef
  5. Bergau L, Bengel P, Sciacca V, Fink T, Sohns C, Sommer P. Atrial Fibrillation and Heart Failure. J Clin Med. 2022;11(9):2510. PubMed, PubMedCentral, CrossRef
  6. Carlisle MA, Fudim M, DeVore AD, Piccini JP. Heart Failure and Atrial Fibrillation, Like Fire and Fury. JACC Heart Fail. 2019;7(6):447-456. PubMed, PubMedCentral, CrossRef
  7. Coats AJS, Heymans S, Farmakis D, Anker SD, Backs J, Bauersachs J, de Boer RA, Čelutkienė J, Cleland JGF, Dobrev D, van Gelder IC, von Haehling S, Hindricks G, Jankowska E, Kotecha D, van Laake LW, Lainscak M, Lund LH, Lunde IG, Lyon AR, Manouras A, Miličić D, Mueller C, Polovina M, Ponikowski P, Rosano G, Seferović PM, Tschöpe C, Wachter R, Ruschitzka F. Atrial disease and heart failure: the common soil hypothesis proposed by the Heart Failure Association of the European Society of Cardiology. Eur Heart J. 2021:ehab834. PubMed, CrossRef
  8. Chen BX, Xie B, Zhou Y, Shi L, Wang Y, Zeng L, Liu X, Yang MF. Association of Serum Biomarkers and Cardiac Inflammation in Patients With Atrial Fibrillation: Identification by Positron Emission Tomography. Front Cardiovasc Med. 2021;8:735082. PubMed, PubMedCentral, CrossRef
  9. Rao LY, Mao Y, Huang K, Li YS, Shu YW. Relationship between atrial tissue remodeling and ECG features in atrial fibrillation. Curr Med Sci. 2019;39(4):541-545. PubMed, CrossRef
  10. Jansen HJ, Bohne LJ, Gillis AM, Rose RA. Atrial remodeling and atrial fibrillation in acquired forms of cardiovascular disease. Heart Rhythm O2. 2020;1(2):147-159. PubMed, PubMedCentral, CrossRef
  11. Li CY, Zhang JR, Hu WN, Li SN. Atrial fibrosis underlying atrial fibrillation (Review). Int J Mol Med. 2021;47(3):9. PubMed, PubMedCentral, CrossRef
  12. Babapoor-Farrokhran S, Gill D, Alzubi J, Mainigi SK. Atrial fibrillation: the role of hypoxia-inducible factor-1-regulated cytokines. Mol Cell Biochem. 2021;476(6):2283-2293. PubMed, CrossRef
  13. Mezache L, Struckman HL, Greer-Short A, Baine S, Györke S, Radwański PB, Hund TJ, Veeraraghavan R. Vascular endothelial growth factor promotes atrial arrhythmias by inducing acute intercalated disk remodeling. Sci Rep. 2020;10(1):20463. PubMed, PubMedCentral, CrossRef
  14. Hazarapetyan L, Zelveian PH, Grigoryan S. Inflammation and coagulation are two interconnected pathophysiological pathways in atrial fibrillation pathogenesis. J Inflamm Res. 2023;16:4967-4975. PubMed, PubMedCentral, CrossRef
  15. Black N, Mohammad F, Saraf K, Morris G. Endothelial function and atrial fibrillation: A missing piece of the puzzle? J Cardiovasc Electrophysiol. 2022;33(1):109-116. PubMed, CrossRef
  16. Han W, Fu S, Wei N, Xie B, Li W, Yang S, Li Y, Liang Z, Huo H. Nitric oxide overproduction derived from inducible nitric oxide synthase increases cardiomyocyte apoptosis in human atrial fibrillation. Int J Cardiol. 2008;130(2):165-173. PubMed, CrossRef
  17. Dzeshka MS, Lip GYH, Snezhitskiy V, Shantsila E. Cardiac fibrosis in patients with atrial fibrillation: mechanisms and clinical implications. J Am Coll Cardiol. 2015;66(8):943-959. PubMed, CrossRef
  18. Linssen PBC, Brunner-La Rocca HP, Schalkwijk CG, Beulens JWJ, Elders PJM, van der Heijden AA, Slieker RC, Stehouwer CDA, Henry RMA. Serum Matrix Metalloproteinases and Left Atrial Remodeling-The Hoorn Study. Int J Mol Sci. 2020;21(14):4944. PubMed, PubMedCentral, CrossRef
  19. Moe GW, Laurent G, Doumanovskaia L, Konig A, Hu X, Dorian P. Matrix metalloproteinase inhibition attenuates atrial remodeling and vulnerability to atrial fibrillation in a canine model of heart failure. J Card Fail. 2008;14(9):768-776. PubMed, CrossRef
  20. Hanford HA, Wong CA, Kassan H, Cundiff DL, Chandel N, Underwood S, Mitchell CA, Soff GA. Angiostatin(4.5)-mediated apoptosis of vascular endothelial cells. Cancer Res. 2003;63(14):4275-4280. PubMed
  21. Cao Y, Ji RW, Davidson D, Schaller J, Marti D, Söhndel S, McCance SG, O’Reilly MS, Llinás M, Folkman J. Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J Biol Chem. 1996;271(46):29461-29467. PubMed, CrossRef
  22. Matsunaga T, Weihrauch DW, Moniz MC, Tessmer J, Warltier DC, Chilian WM. Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide. Circulation. 2002;105(18):2185-2191. PubMed, CrossRef
  23. Weihrauch D, Lohr NL, Mraovic B, Ludwig LM, Chilian WM, Pagel PS, Warltier DC, Kersten JR. Chronic hyperglycemia attenuates coronary collateral development and impairs proliferative properties of myocardial interstitial fluid by production of angiostatin. Circulation. 2004;109(19):2343-2348. PubMed, CrossRef
  24. Tykhomyrov AA, Nedzvetsky VS, Bardachenko NI, Grinenko TV, Kuryata OV. Statin treatment decreases serum angiostatin levels in patients with ischemic heart disease. Life Sci. 2015;134:22-29. PubMed, CrossRef
  25. Erturk I, Sertoglu E, Ozgurtas T, Yesildal F, Acar R, Yildiz B, Aydin FN, Buyukturan G, Saglam K. Angiostatin levels in systolic heart failure patients with chronic kidney disease. Int J Med Biochem. 2019;2(2):41-45. CrossRef
  26. Tykhomyrov AA, Yusova EI, Diordieva SI, Corsa VV, Grinenko TV. Production and characteristics of antibodies against K1-3 fragment of human plasminogen. Biotechnol Acta. 2013;6(1):86-96. CrossRef
  27. Goldring JPD. Measuring Protein Concentration with Absorbance, Lowry, Bradford Coomassie Blue, or the Smith Bicinchoninic Acid Assay Before Electrophoresis. Methods Mol Biol. 2019;1855:31-39. PubMed, CrossRef
  28. Alegria-Schaffer A. Western blotting using chemiluminescent substrates. Methods Enzymol. 2014;541:251-259. PubMed, CrossRef
  29. Keefe JA, Garber R, McCauley MD, Wehrens XHT. Tachycardia and Atrial Fibrillation-Related Cardiomyopathies: Potential Mechanisms and Current Therapies. JACC Heart Fail. 2023;S2213-1779(23)00832-6. PubMed, CrossRef
  30. Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS. Nitric Oxide and Endothelial Dysfunction. Crit Care Clin. 2020;36(2):307-321. PubMed, PubMedCentral,CrossRef
  31. Nishijima Y, Sridhar A, Bonilla I, Velayutham M, Khan M, Terentyeva R, Li C, Kuppusamy P, Elton T.S, Terentyev D, Gyorke S, Zweier JL, Cardounel AJ, Carnes CA. Tetrahydrobiopterin depletion and NOS2 uncoupling contribute to heart failure-induced alterations in atrial electrophysiology. Cardiovasc Res. 2011;91(1):71-79. PubMed, PubMedCentral,CrossRef
  32. Xia Y, Zweier JL. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA. 1997;94(13):6954-6958. PubMed, PubMedCentral,CrossRef
  33. Bonilla IM, Sridhar A, Györke S, Cardounel AJ, Carnes CA. Nitric oxide synthases and atrial fibrillation. Front Physiol. 2012;3:105. PubMed, PubMedCentral,CrossRef
  34. Ziolo MT, Bers DM. The real estate of NOS signaling: location, location, location. Circ Res. 2003;92(12):1279-1281. PubMed, CrossRef
  35. Niwa M, Inao S, Takayasu M, Kawai T, Kajita Y, Nihashi T, Kabeya R, Sugimoto T, Yoshida J. Time course of expression of three nitric oxide synthase isoforms after transient middle cerebral artery occlusion in rats. Neurol Med Chir (Tokyo). 200;41(2):63-72. PubMed, CrossRef
  36. Chen ZQ, Mou RT, Feng DX, Wang Z, Chen G. The role of nitric oxide in stroke. Med Gas Res. 2017;7(3):194-203. PubMed, PubMedCentral,CrossRef
  37. ArunaDevi R, Ramteke VD, Kumar S, Shukla MK, Jaganathan S, Kumar D, Sharma AK, Tandan SK. Neuroprotective effect of s-methylisothiourea in transient focal cerebral ischemia in rat. Nitric Oxide. 2010;22(1):1-10. PubMed, CrossRef
  38. Wang K, Liu Y, Huang S, Li H, Hou J, Huang J, Chen J, Feng K, Liang M, Chen G, Wu Z. Does an imbalance in circulating vascular endothelial growth factors (VEGFs) cause atrial fibrillation in patients with valvular heart disease? J Thorac Dis. 2019;11(12):5509-5516. PubMed, PubMedCentral,CrossRef
  39. Dashkevich A, Hagl C, Beyersdorf F, Nykänen AI, Lemström KB. VEGF Pathways in the Lymphatics of Healthy and Diseased Heart. Microcirculation. 2016;23(1):5-14. PubMed, CrossRef
  40. Berntsson J, Smith JG, Johnson LSB, Söderholm M, Borné Y, Melander O, Orho-Melander M, Nilsson J, Engström G. Increased vascular endothelial growth factor D is associated with atrial fibrillation and ischaemic stroke. Heart. 2019;105(7):553-558. PubMed, CrossRef
  41. Matsuo R, Ago T, Kamouchi M, Kuroda J, Kuwashiro T, Hata J, Sugimori H, Fukuda K, Gotoh S, Makihara N, Fukuhara M, Awano H, Isomura T, Suzuki K, Yasaka M, Okada Y, Kiyohara Y, Kitazono T. Clinical significance of plasma VEGF value in ischemic stroke – research for biomarkers in ischemic stroke (REBIOS) study. BMC Neurol. 2013;13:32. PubMed, PubMedCentral,CrossRef
  42. Gately S, Twardowski P, Stack MS, Cundiff DL, Grella D, Castellino FJ, Enghild J, Kwaan HC, Lee F, Kramer RA, Volpert O, Bouck N, Soff GA. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci USA. 1997;94(20):10868-10872. PubMed, PubMedCentral,CrossRef
  43. Dodd T, Wiggins L, Hutcheson R, Smith E, Musiyenko A, Hysell B, Russell JC, Rocic P. Impaired coronary collateral growth in the metabolic syndrome is in part mediated by matrix metalloproteinase 12-dependent production of endostatin and angiostatin. Arterioscler Thromb Vasc Biol. 2013;33(6):1339-1349. PubMed, PubMedCentral,CrossRef
  44. Sodha NR, Clements RT, Boodhwani M, Xu SH, Laham RJ, Bianchi C, Sellke FW. Endostatin and angiostatin are increased in diabetic patients with coronary artery disease and associated with impaired coronary collateral formation. Am J Physiol Heart Circ Physiol. 2009;296(2):H428-H434. PubMed, PubMedCentral,CrossRef
  45. Tykhomyrov AA, Kushnir YuS, Nedzvetsky VS, Grinenko TV, Kuryata OV. Citicoline affects serum angiostatin and neurospecific protein levels in patients with atrial fibrillation and ischemic stroke. Ukr Biochem J. 2019;91(5):34-45. CrossRef
  46. Tykhomyrov AA, Nedzvetsky VS, Ağca CA, Korsa VV, Grinenko TV. Plasminogen and its fragments in rat brain: a plausible role for astrocytes in angiostatin generation. Ukr Biochem J. 2017;89(2):43-54. CrossRef
  47. Radziwon-Balicka A, Moncada de la Rosa C, Zielnik B, Doroszko A, Jurasz P. Temporal and pharmacological characterization of angiostatin release and generation by human platelets: implications for endothelial cell migration. PLoS One. 2013;8(3):e59281. PubMed, PubMedCentral,CrossRef
  48. Barrett CD, Moore HB, Banerjee A, Silliman CC, Moore EE, Yaffe MB. Human neutrophil elastase mediates fibrinolysis shutdown through competitive degradation of plasminogen and generation of angiostatin. J Trauma Acute Care Surg. 2017;83(6):1053-1061. PubMed, PubMedCentral,CrossRef
  49. Xu Z, Shi H, Li Q, Mei Q, Bao J, Shen Y, Xu J. Mouse macrophage metalloelastase generates angiostatin from plasminogen and suppresses tumor angiogenesis in murine colon cancer. Oncol Rep. 2008;20(1):81-88. PubMed, CrossRef
  50. Lewkowicz J, Knapp M, Tankiewicz-Kwedlo A, Sawicki R, Kamińska M, Waszkiewicz E, Musiał WJ. MMP-9 in atrial remodeling in patients with atrial fibrillation. Ann Cardiol Angeiol (Paris). 2015;64(4):285-291. PubMed, CrossRef
  51. Li M, Yang G, Xie B, Babu K, Huang C. Changes in matrix metalloproteinase-9 levels during progression of atrial fibrillation. J Int Med Res. 2014;42(1):224-230. PubMed, CrossRef
  52. Liu J, Wang Y, Akamatsu Y, Lee CC, Stetler RA, Lawton MT, Yang GY. Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials. Prog Neurobiol. 2014;115:138-156. PubMed, PubMedCentral, CrossRef
  53. Montaner J, Alvarez-Sabín J, Molina CA, Anglés A, Abilleira S, Arenillas J, Monasterio J. Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke. 2001;32(12):2762-2767. PubMed, CrossRef
  54. Zheng X, Zhong C, Zhu Z, Zhang K, Peng H, Xu T, Bu X, Che B, Xu T, Wang A, Chen J, Zhang Y, He J. Association between serum matrix metalloproteinase-9 and poor prognosis in acute ischemic stroke patients: The role of dyslipidemia. Nutr Metab Cardiovasc Dis. 2021;31(1):209-215. PubMed, CrossRef
  55. Zhong C, Bu X, Xu T, Guo L, Wang X, Zhang J, Cui Y, Li D, Zhang J, Ju Z, Chen CS, Chen J, Zhang Y, He J. Serum Matrix Metalloproteinase-9 and Cognitive Impairment After Acute Ischemic Stroke. J Am Heart Assoc. 2018;7(1):e007776. PubMed, PubMedCentral, CrossRef
  56. Zhong C, Yang J, Xu T, Xu T, Peng Y, Wang A, Wang J, Peng H, Li Q, Ju Z, Geng D, Zhang Y, He J; CATIS Investigators. Serum matrix metalloproteinase-9 levels and prognosis of acute ischemic stroke. Neurology. 2017;89(8):805-812. PubMed, PubMedCentral, CrossRef
  57. Gundogdu EB, Bekar A, Turkyilmaz M, Gumus A, Kafa IM, Cansev M. CDP-choline modulates matrix metalloproteinases in rat sciatic injury. J Surg Res. 2016;200(2):655-663. PubMed, CrossRef
  58. Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C, Judea-Pusta C, Uivarosan D, Munteanu MA, Bungau S. Multifaceted Role of Matrix Metalloproteinases in Neurodegenerative Diseases: Pathophysiological and Therapeutic Perspectives. Int J Mol Sci. 2021;22(3):1413. PubMed, PubMedCentral, CrossRef
  59. Weng CH, Chung FP, Chen YC, Lin SF, Huang PH, Kuo TB, Hsu WH, Su WC,Sung YL, Lin YJ, Chang SL, Lo LW, Yeh HI, Chen YJ, Hong YR, Chen SA, Hu YF. Pleiotropic effects of myocardial MMP-9 inhibition to prevent ventricular arrhythmia. Sci Rep. 2016; 6: 38894. PubMed, PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.