Ukr.Biochem.J. 2024; Volume 96, Issue 3, May-Jun, pp. 31-38


The level of sex and fertility hormones in the serum of male patients recovered from COVID-19

M. K. Albayaty1*, M. S. Ali2, A. Y. AL-Tarboolee1, R. H. Yousif3

1Department of Molecular and Medical Biotechnology,
College of Biotechnology, Al-Nahrain University, Jadriya, Baghdad, Iraq;
2University of Technology-Iraq, Applied Sciences Department,
Branch of Chemistry, Baghdad, Iraq;
3Department of Forensic Evidence Sciences, College of Medical Technology,
Al-Farahidi University, Baghdad, Iraq;

Received: 20 March 2024; Revised: 30 April 2024
Accepted: 31 May 2024; Available on-line: 17 June 2024

The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that generated the COVID­-19 pandemic is a broad-spectrum infection that besides the respiratory tract, can attack multiple organs, including­ the digestive, circulatory, and urinary systems. However, the negative consequences of SARS-CoV-2 on the male reproductive system have been largely ignored. The aim of this research was to see how SARS-CoV-2 affects the production of hormones, which are the markers of male reproductive function and fertility. The 350 Iraqi male participants were classified into two groups consisting of 150 COVID-19 recovered patients with a mean age of (32 ± 7.9) years and COVID-19 diagnosis confirmed by RT-PCR, and 200 apparently healthy male volunteers of similar age. The patients’ group was further divided into three groups depending on the recovery period of 3, 5 and 7 months. Serum levels of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin were measured using the Mindray CL-1000i automated chemiluminescence analyzer provided with matching kits. When comparing the indices of COVID-19 recovered participants to the control group, the results revealed a decrease in testosterone level that was positively associated with the recovery period and an increase in the LH, FSH and prolactin levels that were negatively associated with the recovery period. It is supposed that infection with SARS-CoV-2 may be followed by a temporary condition of testicular failure.

Keywords: , ,


  1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. PubMed, PubMedCentral, CrossRef
  2. Lake MA. What we know so far: COVID-19 current clinical knowledge and research. Clin Med (Lond). 2020;20(2):124-127. PubMed, PubMedCentral, CrossRef
  3. Yuen KS, Ye ZW, Fung SY, Chan CP, Jin DY. SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci. 2020;10:40. PubMed, PubMedCentral, CrossRef
  4. Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses – drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15(5):327-347. PubMed, PubMedCentral, CrossRef
  5. Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281-286. PubMed, PubMedCentral, CrossRef
  6. Chan JF, Lau SK, Woo PC. The emerging novel Middle East respiratory syndrome coronavirus: the “knowns” and “unknowns”. J Formos Med Assoc. 2013;112(7):372-381. PubMed, PubMedCentral, CrossRef
  7. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280. PubMed, PubMedCentral, CrossRef
  8. Zhao Y, Zhao Z, Wang Y , Zhou Y, Ma Y, Zuo W. Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2. Am J Respir Crit Care Med. 2020;202(5):756-759. PubMed, PubMedCentral, CrossRef
  9. Fan C, Lu W , Li K, Ding Y, Wang J. ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Infection in COVID-19 Patients. Front Med (Lausanne). 2021;7:563893. PubMed, PubMedCentral, CrossRef
  10. Wang Z, Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells. 2020;9(4):920. PubMed, PubMedCentral, CrossRef
  11. Chai X, Hu L, Zhang Y, Han W, Zhou L, Ke A, Zhou J, Shi G, Fang N, Fan J, Cai J, Fan J, Lan F. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv. 2020. CrossRef
  12. Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, Li Z, Cui X, Xiao J, Zhan J Meng T, Zhou W, Liu J, Xu H. Digestive system is a potential route of COVID-19: an analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut. 2020;69(6):1010-1018. CrossRef
  13. Ng SC, Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 2020;69(6):973-974. PubMed, PubMedCentral, CrossRef
  14. Zou X , Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-192. PubMed, PubMedCentral, CrossRef
  15. Bird BM, Zilioli S. Testosterone. In: Encyclopedia of Evolutionary Psychological Science. Eds.Weekes-Shackelford VA, Shackelford TK. Cham: Springer International Publishing AG; 2017. p. 1-3. CrossRef
  16. Ilahi S, Ilahi TB. Anatomy, Adenohypophysis (Pars Anterior, Anterior Pituitary). In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
  17. Ulloa-Aguirre A, Reiter E , Crépieux P. FSH Receptor Signaling: Complexity of Interactions and Signal Diversity. Endocrinology. 2018;159(8):3020-3035. PubMed, CrossRef
  18. Lucas BK, Ormandy CJ, Binart N, Bridges RS, Kelly PA. Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology. 1998;139(10):4102-4107. PubMed, CrossRef
  19. Albertson BD, Sienkiewicz ML, Kimball D, MunabiAK, Cassorla F, Loriaux DL. New evidence for a direct effect of prolactin on rat adrenal steroidogenesis. Endocr Res. 1987;13(3):317-333. PubMed, CrossRef
  20. Bartke A. Hyperprolactinemia and male reproduction. In: Paulson J, Negro-Vilar A, Lucena E, Martini L (eds.). Andrology: Male Fertility and Sterility. New York: Academic Press; 1986; 101-123.
  21. Liu W, Han R, Wu H, Han D. Viral threat to male fertility. Andrologia. 2018;50(11):e13140. PubMed, PubMedCentral, CrossRef
  22. Xu J, Qi L, Chi X, Yang J, Wei X, Gong E, Peh S, Gu J. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol Reprod. 2006;74(2):410-416. PubMed, PubMedCentral, CrossRef
  23. Esteves SC. Clinical management of infertile men with nonobstructive azoospermia. Asian J Androl. 2015;17(3):459-470. PubMed, PubMedCentral, CrossRef
  24. Sokol RZ, Swerdloff RS. Endocrine evaluation. In: Infertility in the male. Eds. Lipshultz LI, Howards SS.3rd ed. New York: Churchill Livingstone; 1997. p. 210-18.
  25. Bhasin S, de Kretser DM, Baker HW. Clinical review 64: Pathophysiology and natural history of male infertility. J Clin Endocrinol Metab. 1994;79(6):1525-1529. PubMed, CrossRef
  26. Forti G, Krausz C. Clinical review 100: Evaluation and treatment of the infertile couple. J Clin Endocrinol Metab. 1998;83(12):4177-4188. PubMed, CrossRef
  27. Baker HWG. Male infertility. In: Endocrinology. Eds. DeGroot LG, Jameson JL. 4th ed. Philadelphia: Saunders Company; 2001. p. 3199-3228.
  28. Albertson BD, Sienkiewicz ML, Kimball D, Munabi AK, Cassorla F, Loriaux DL. New evidence for a direct effect of prolactin on rat adrenal steroidogenesis. Endocr Res. 1987;13(3):317-333. PubMed, CrossRef
  29. Smith MS, Bartke A. Effects of hyperprolactinemia on the control of luteinizing hormone and follicle-stimulating hormone secretion in the male rat. Biol Reprod. 1987;36(1):138-147. PubMed, CrossRef
  30. Rasmussen DD. The interaction between mediobasohypothalamic dopaminergic and endorphinergic neuronal systems as a key regulator of reproduction: an hypothesis. J Endocrinol Invest. 1991;14(4):323-352. PubMed, CrossRef
  31. Ramesh Babu S, Sadhnani MD, Swarna M, Padmavathi P, Reddy PP. Evaluation of FSH, LH and testosterone levels in different subgroups of infertile males. Indian J Clin Biochem. 2004;19(1):45-49. PubMed, PubMedCentral, CrossRef
  32. Rastrelli G, Di Stasi V, Inglese F, Beccaria M, Garuti M, Di Costanzo D, Spreafico F, Greco GF, Cervi G, Pecoriello A, Magini A, Todisco T, Cipriani S, Maseroli E, Corona G, Salonia A, Lenzi A, Maggi M, De Donno G, Vignozzi L. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology. 2021;9(1):88-98. PubMed, PubMedCentral, CrossRef
  33. Schroeder M, Schaumburg B, Mueller Z, Parplys A, Jarczak D, Roedl K, Nierhaus A, de Heer G, Grensemann J, Schneider B, Stoll F, Bai T, Jacobsen H, Zickler M, Stanelle-Bertram S, Klaetschke K, Renné T, Meinhardt A, Aberle J, Hiller J, Peine S, Kreienbrock L, Klingel K, Kluge S, Gabriel G. High estradiol and low testosterone levels are associated with critical illness in male but not in female COVID-19 patients: a retrospective cohort study. Emerg Microbes Infect. 2021;10(1):1807-1818. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.