Ukr.Biochem.J. 2024; Volume 96, Issue 4, Jul-Aug, pp. 25-32

doi: https://doi.org/10.15407/ubj96.04.025

Effect of long-term ethanol consumption and a high-fat diet on mitochondrial respiration in rat pancreatic acinar cells and hepatocytes

O. O. Bilonoha*, H. M. Mazur, B. O. Manko,
O. R. Kulachkovsky, V. V. Manko

Ivan Franko National University of Lviv, Lviv, Ukraine;
*e-mail: olha.bilonoha@lnu.edu.ua

Received: 26 March 2024; Revised: 09 May 2024;
Accepted: 25 July 2024; Available on-line: 04 September b2024

Chronic alcohol consumption may cause pancreatitis and alcohol-related liver diseases. Both adaptation and damage of liver mitochondria in animals on chronic ethanol and high-fat diets were demonstrated. It is currently not clear if ethanol or its metabolites such as fatty acid ethyl esters can cause mitochondrial damage to the pancreas. The present study aimed to evaluate the effect of chronic ethanol administration in combination with a high-fat diet on mitochondrial respiration in both pancreatic acinar cells and hepatocytes of rats. Wistar male rats on a high-fat diet (35% calories) were administered ethanol (6 g/kg body weight) by oral gavage for 14 days. Pancreatic acini cells and hepatocytes were isolated with collagenase digestion. The respiration of isolated cells was studied with a Clark electrode. Ethanol administration to rats kept on a high-fat diet was followed by a rapid loss of animal weight during the first 5 days of the experiment and diminished secretory response of pancreatic acini to acetylcholine, however, no changes in acinar cells ultrastructure, basal, oligomycin-insensitive or FCCP-uncoupled respiration were found. Meanwhile ethanol caused a significant (~40%) increase in basal and maximal FCCP-uncoupled respiration rate of isolated hepatocytes. In conclusion, chronic ethanol administration to rats on a high-fat diet does not cause mitochondrial damage in the pancreas, while mitochondria of the liver adapt to ethanol by increasing respiration rate.

Keywords: , , , ,


References:

  1. Rehm J, Taylor B, Mohapatra S, Irving H, Baliunas D, Patra J, Roerecke M. Alcohol as a risk factor for liver cirrhosis: a systematic review and meta-analysis. Drug Alcohol Rev. 2010;29(4):437-445. PubMed, CrossRef
  2. Samokhvalov AV, Rehm J, Roerecke M. Alcohol Consumption as a Risk Factor for Acute and Chronic Pancreatitis: A Systematic Review and a Series of Meta-analyses. EBioMedicine. 2015;2(12):1996-2002. PubMed, PubMedCentral, CrossRef
  3. Lankisch PG, Apte M, Banks PA. Acute pancreatitis. Lancet. 2015;386(9988):85-96. PubMed, CrossRef
  4. Guo F, Zheng K, Benedé-Ubieto R, Cubero FJ, Nevzorova YA. The Lieber-DeCarli Diet-A Flagship Model for Experimental Alcoholic Liver Disease. Alcohol Clin Exp Res. 2018;42(10):1828-1840. PubMed, CrossRef
  5. Singh M, LaSure MM, Bockman DE. Pancreatic acinar cell function and morphology in rats chronically fed an ethanol diet. Gastroenterology. 1982;82(3):425-434. PubMed
  6. Ponnappa BC, Marciniak R, Schneider T, Hoek JB, Rubin E. Ethanol consumption and susceptibility of the pancreas to cerulein-induced pancreatitis. Pancreas. 1997;14(2):150-157. PubMed, CrossRef
  7. Deng X, Wang L, Elm MS, Gabazadeh D, Diorio GJ, Eagon PK, Whitcomb DC. Chronic alcohol consumption accelerates fibrosis in response to cerulein-induced pancreatitis in rats. Am J Pathol. 2005;166(1):93-106. PubMed, PubMedCentral, CrossRef
  8. Manko BO, Bilonoha OO, Voloshyn DM, Zub AM, Ivasechko II, Manko VV. Pyruvate and Glutamine Define the Effects of Cholecystokinin and Ethanol on Mitochondrial Oxidation, Necrosis, and Morphology of Rat Pancreatic Acini. Pancreas. 2021;50(7):972-981. PubMed, CrossRef
  9. Neelamekam S, Kwok S, Malone R, Wierzbicki AS, Soran H. The impact of lipoprotein lipase deficiency on health-related quality of life: a detailed, structured, qualitative study. Orphanet J Rare Dis. 2017;12(1):156. PubMed, PubMedCentral, CrossRef
  10. Laposata EA, Lange LG. Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science. 1986;231(4737):497-499.  PubMed, CrossRef
  11. Werner J, Laposata M, Fernandez-del Castillo C, Saghir M, Iozzo RV, Lewandrowski KB, Warshaw AL. Pancreatic injury in rats induced by fatty acid ethyl ester, a nonoxidative metabolite of alcohol. Gastroenterology. 1997;113(1):286-294. PubMed, CrossRef
  12. Werner J, Saghir M, Warshaw AL, Lewandrowski KB, Laposata M, Iozzo RV, Carter EA, Schatz RJ, Fernandez-Del Castillo C. Alcoholic pancreatitis in rats: injury from nonoxidative metabolites of ethanol. Am J Physiol Gastrointest Liver Physiol. 2002;283(1):G65-G73. PubMed, CrossRef
  13. Criddle DN, Murphy J, Fistetto G, Barrow S, Tepikin AV, Neoptolemos JP, Sutton R, Petersen OH. Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis. Gastroenterology. 2006;130(3):781-793. PubMed, CrossRef
  14. Huang W, Booth DM, Cane MC, Chvanov M, Javed MA, Elliott VE, Armstrong JA, Dingsdale H, Cash N, Li Y, Greenhalf W, Mukherjee R, Kaphalia BS, Jaffar M, Petersen OH, Tepikin AV, Sutton R, Criddle DN. Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis. Gut. 2014;63(8):1313-1324. PubMed, PubMedCentral, CrossRef
  15. Criddle DN. The role of fat and alcohol in acute pancreatitis: A dangerous liaison. Pancreatology. 2015;15(4 Suppl):S6-S12. PubMed, cr id=”https://doi.org/10.1016/j.pan.2015.02.009″]
  16. Biczo G, Vegh ET, Shalbueva N, Mareninova OA, Elperin J, Lotshaw E, Gretler S, Lugea A, Malla SR, Dawson D, Ruchala P, Whitelegge J, Samuel W French SW, Wen L, Husain SZ, Gorelick FS, Hegyi P, Rakonczay Z, Gukovsky I, Gukovskaya AS. Mitochondrial Dysfunction, Through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models. Gastroenterology. 2018;154(3):689-703. PubMed, PubMedCentral, CrossRef
  17. Han D, Ybanez MD, Johnson HS, McDonald JN, Mesropyan L, Sancheti H, Martin G, Martin A, Lim AM, Dara L, Cadenas E, Tsukamoto H, Kaplowitz N. Dynamic adaptation of liver mitochondria to chronic alcohol feeding in mice: biogenesis, remodeling, and functional alterations. J Biol Chem. 2012;287(50):42165-42179. PubMed, PubMedCentral, CrossRef
  18. Manko BO, Klevets MYu, Manko VV. An implication of novel methodology to study pancreatic acinar mitochondria under in situ conditions. Cell Biochem Funct. 2013;31(2):115-121. PubMed, CrossRef
  19. Mazur HM, Merlavsky VM, Manko BO, Manko VV. mPTP opening differently affects electron transport chain and oxidative phosphorylation at succinate and NAD-dependent substrates oxidation in permeabilized rat hepatocytes. Ukr Biochem J. 2020;92(4):14-23. CrossRef
  20. Manko BO, Bilonoha OO, Manko VV. Adaptive respiratory response of rat pancreatic acinar cells to mitochondrial membrane depolarization. Ukr Biochem J. 2019;91(3):34-45. CrossRef
  21. Bragado MJ, García LJ, López MA, Calvo JJ. Protective effect of long term high fiber diet consumption on rat exocrine pancreatic function after chronic ethanol intake. J Nutr Biochem. 2001;12(6):338-345. PubMed, CrossRef
  22. Mazur HM, Merlavsky VM, Manko BO, Manko VV. Dependence of the mitochondrial adaptive capacity of hepatocytes on the oxidative substrates availability. Ukr Biochem J. 2019;91(6):5-14. CrossRef
  23. Han D, Johnson HS, Rao MP, Martin G, Sancheti H, Silkwood KH, Decker CW, Nguyen KT, Casian JG, Cadenas E, Kaplowitz N. Mitochondrial remodeling in the liver following chronic alcohol feeding to rats. Free Radic Biol Med. 2017;102:100-110. PubMed, PubMedCentral, CrossRef
  24. Zhong Z, Lemasters JJ. A unifying hypothesis linking hepatic adaptations for ethanol metabolism to the proinflammatory and profibrotic events of alcoholic liver disease. Alcohol Clin Exp Res. 2018;42(11):2072-2089. PubMed, PubMedCentral, CrossRef
  25. Manko BV, Kozopas NM, Mazur HM, Voityk AМ, Manko BO, Manko VV. Bioenergetic functions of mitochondria in liver, pancreatic acinar cells, and sperm cells of rats fed short-term high-fat or high-fat high-sugar diets. Ukr Biochem J. 2023;95(5):51-60. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.