Ukr.Biochem.J. 2024; Volume 96, Issue 4, Jul-Aug, pp. 69-78

doi: https://doi.org/10.15407/ubj96.04.069

MiR-378a-3p and miR-181b-5p as nonalcoholic steatohepatitis non-invasive diagnostic biomarkers and their correlations with liver fibrosis

T. I. Ahmed1, E. Mamdouh2, N. R. Ismael2, O. O. Abdelaleem3*,
N. F. Hemeda4, M. A. Hegazy5, R. A. Ali1

1Departments of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt;
2Departments of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt;
3Departments of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt;
4Department of Genetics, Faculty of Agriculture, Fayoum University, Fayoum, Egypt;
5Departments of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
*e-mail: dr.omayma@yahoo.com

Received: 24 March 2024; Revised: 09 May 2024;
Accepted: 25 July 2024; Available on-line: 04 September 2024

Nonalcoholic steatohepatitis (NASH) is one of the most common liver diseases that is diagnosed by biopsy and, therefore, requires the development of non-invasive tests for diagnosis. Serum levels of microRNAs were shown to correlate with the severity of various liver diseases, but the role of miR-378a and miR-181b-5p in NASH remains unclear. The current study aims to assess the serum expression level of miR-378a-3p and miR-181b-5p in patients with NASH and to find out the correlation of these indices with liver fibrosis. The case-control research was carried out on 60 patients with confirmed NASH relative to 50 healthy subjects. Extraction and reverse transcription of micro RNAs was performed using miRCURY LNA RT Kit (Qiagen, Maryland, USA) Detection of miR-378a-3p and miR-181b-5p was done using qPCR. It was shown that serum expression level of miR-378a-3p in NASH patients was downregulated with a median range fold change 0.29, while that of miR-181b-5p was upregulated with a median range fold change 13.08. The ROC curve was constructed to discriminate the NASH group from the healthy group. The optimal cut-off value of miR-378a-3p was ≤0.031 with a sensitivity of 65%, the optimal cut-off value of miR-181b-5p was ≥ 0.063 with a sensitivity of 93.3%. Statistically significant positive correlation between miR-181b-5p level and fibroscan data was demonstrated. The present study showed that serum miR-378a-3p and miR-181b-5p could be used as biomarkers of NASH.

Keywords: , , ,


References:

  1. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15(1):11-20. PubMed, CrossRef
  2. Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, Caballeria J, Colombo M, Craxi A, Crespo J, Day CP, Eguchi Y, Geier A, Kondili LA, Kroy DC, Lazarus JV, Loomba R, Manns MP, Marchesini G, Nakajima A, Negro F, Petta S, Ratziu V, Romero-Gomez M, Sanyal A, Schattenberg JM, Tacke F, Tanaka J, Trautwein C, Wei L, Zeuzem S, Razavi H. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030. J Hepatol. 2018;69(4):896-904. PubMed, CrossRef
  3. Paul J. Recent advances in non-invasive diagnosis and medical management of non-alcoholic fatty liver disease in adult. Egypt Liver J. 2020;10 (1):37.
    CrossRef
  4. Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani AL. miRNA Signature in NAFLD: A Turning Point for a Non-Invasive Diagnosis. Int J Mol Sci. 2018;19(12):3966. PubMed, PubMedCentral, CrossRef
  5. Gjorgjieva M, Sobolewski C, Dolicka D, Correia de Sousa M, Foti M. miRNAs and NAFLD: from pathophysiology to therapy. Gut. 2019;68(11):2065-2079. PubMed, CrossRef
  6. Erhartova D, Cahova M, Dankova H, Heczkova M, Mikova I, Sticova E, Spicak J, Seda O, Trunecka P. Serum miR-33a is associated with steatosis and inflammation in patients with non-alcoholic fatty liver disease after liver transplantation. PLoS One. 2019;14(11):e0224820. PubMed, PubMedCentral, CrossRef
  7. Assmann TS, Recamonde-Mendoza M, Costa AR, Puñales M, Tschiedel B, Canani LH, Bauer AC, Crispim D. Circulating miRNAs in diabetic kidney disease: case-control study and in silico analyses. Acta Diabetol. 2019;56(1):55-65. PubMed, CrossRef
  8. Wang X, Sun H, Liu H, Ma L, Jiang C, Liao H, Xu S, Xiang J, Cao Z. MicroRNA-181b-5p modulates tumor necrosis factor-α-induced inflammatory responses by targeting interleukin-6 in cementoblasts. J Cell Physiol. 2019;234(12):22719-22730.
    PubMed, CrossRef
  9. Solayman MH, Langaee T, Patel A, El-Wakeel L, El-Hamamsy M, Badary O, Johnson JA. Identification of suitable endogenous normalizers for qRT-PCR Aanalysis of plasma microRNA expression in essential hypertension. Mol Biotechnol. 2016;58(3):179-187.
    PubMed, PubMedCentral, CrossRef
  10. Lange T, Stracke S, Rettig R, Lendeckel U, Kuhn J, Schlüter R, Rippe V, Endlich K, Endlich N. Identification of miR-16 as an endogenous reference gene for the normalization of urinary exosomal miRNA expression data from CKD patients. PLoS One. 2017;12(8):e0183435. PubMed, PubMedCentral, CrossRef
  11. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408. PubMed, PubMedCentral, CrossRef
  12. Issa D, Alkhouri N. Nonalcoholic fatty liver disease and hepatocellular carcinoma: new insights on presentation and natural history. Hepatobiliary Surg Nutr. 2017;6(6):401-403. PubMed, PubMedCentral, CrossRef
  13. Cholankeril G, Patel R, Khurana S, Satapathy SK. Hepatocellular carcinoma in non-alcoholic steatohepatitis: Current knowledge and implications for management. World J Hepatol. 2017;9(11):533-543. PubMed, PubMedCentral, CrossRef
  14. Tafrihi M, Hasheminasab E. MiRNAs: Biology, Biogenesis, their Web-based Tools, and Databases. Microrna. 2019;8(1):4-27. PubMed, CrossRef
  15. Subramanian S, Steer CJ. Special Issue: MicroRNA Regulation in Health and Disease. Genes (Basel). 2019;10(6):457. PubMed, PubMedCentral, CrossRef
  16. Kerr TA, Korenblat KM, Davidson NO. MicroRNAs and liver disease. Transl Res. 2011;157(4):241-252. PubMed, PubMedCentral, CrossRef
  17. Mahmoud RH, Hefzy EM, Shaker OG, Ahmed TI, Abdelghaffar NK, Hassan EA, Ibrahim AA, Ali DY, Mohamed MM, Abdelaleem OO. GAS5 rs2067079 and miR-137 rs1625579 functional SNPs and risk of chronic hepatitis B virus infection among Egyptian patients. Sci Rep. 2021;11(1):20014.
    PubMed, PubMedCentral, CrossRef
  18. Pirola CJ, Fernández Gianotti T, Castaño GO, Mallardi P, San Martino J, Mora Gonzalez Lopez Ledesma M, Flichman D, Mirshahi F, Sanyal AJ, Sookoian S. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut. 2015;64(5):800-812. PubMed, PubMedCentral, CrossRef
  19. Hyun J, Wang S, Kim J, Rao KM, Park SY, Chung I, Ha CS, Kim SW, Yun YH, Jung Y. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat Commun. 2016;7:10993. PubMed, PubMedCentral, CrossRef
  20. Yu F, Fan X, Chen B, Dong P, Zheng J. Activation of Hepatic Stellate Cells is Inhibited by microRNA-378a-3p via Wnt10a. Cell Physiol Biochem. 2016;39(6):2409-2420. PubMed, CrossRef
  21. Yu F, Yang J, Huang K, Pan X, Chen B, Dong P, Zheng J. The Epigenetically-Regulated microRNA-378a Targets TGF-β2 in TGF-β1-Treated Hepatic Stellate Cells. Cell Physiol Biochem. 2016;40(1-2):183-194. PubMed, CrossRef
  22. Zaafan MA, Abdelhamid AM. Dasatinib ameliorates thioacetamide-induced liver fibrosis: modulation of miR-378 and miR-17 and their linked Wnt/β-catenin and TGF-β/smads pathways. J Enzyme Inhib Med Chem. 2022;37(1):118-124. PubMed, PubMedCentral, CrossRef
  23. Zhang T, Zhao X, Steer CJ, Yan G, Song G. A negative feedback loop between microRNA-378 and Nrf1 promotes the development of hepatosteatosis in mice treated with a high fat diet. Metabolism. 2018;85:183-191. PubMed, PubMedCentral, CrossRef
  24. Liu W, Cao H, Ye C, Chang C, Lu M, Jing Y, Zhang D, Yao X, Duan Z, Xia H, Wang YC, Jiang J, Liu MF, Yan J, Ying H. Hepatic miR-378 targets p110α and controls glucose and lipid homeostasis by modulating hepatic insulin signalling. Nat Commun. 2014;5:5684. PubMed, CrossRef
  25. Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, Kellum JM, Min H, Luketic VA, Sanyal AJ. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology. 2008;48(6):1810-1820. PubMed, PubMedCentral, CrossRef
  26. Meng F, Glaser SS, Francis H, DeMorrow S, Han Y, Passarini JD, Stokes A, Cleary JP, Liu X, Venter J, Kumar P, Priester S, Hubble L, Staloch D, Sharma J, Liu CG, Alpini G. Functional analysis of microRNAs in human hepatocellular cancer stem cells. J Cell Mol Med. 2012;16(1):160-173. PubMed, PubMedCentral, CrossRef
  27. Wang Y, Zhu K, Yu W, Wang H, Liu L, Wu Q, Li S, Guo J. MiR-181b regulates steatosis in nonalcoholic fatty liver disease via targeting SIRT1. Biochem Biophys Res Commun. 2017;493(1):227-232. PubMed, CrossRef
  28. Wang W, Zhong GZ, Long KB, Liu Y, Liu YQ, Xu AL. Silencing miR-181b-5p upregulates PIAS1 to repress oxidative stress and inflammatory response in rats with alcoholic fatty liver disease through inhibiting PRMT1. Int Immunopharmacol. 2021;101(Pt B):108151. PubMed, CrossRef
  29. Zheng J, Wu C, Xu Z, Xia P, Dong P, Chen B, Yu F. Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway. Mol Cell Biochem. 2015;398(1-2):1-9. PubMed, CrossRef
  30. Wang B, Li W, Guo K, Xiao Y, Wang Y, Fan J. miR-181b promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients. Biochem Biophys Res Commun. 2012;421(1):4-8. PubMed, CrossRef
  31. Wang B, Hsu SH, Majumder S, Kutay H, Huang W, Jacob ST, Ghoshal K. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene. 2010;29(12):1787-1797. PubMed, PubMedCentral, CrossRef
  32. Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, Deng C, Wauthier E, Reid LM, Ye QH, Qin LX, Yang W, Wang HY, Tang ZY, Croce CM, Wang XW. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology. 2009;50(2):472-480. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.