Ukr.Biochem.J. 2024; Volume 96, Issue 5, Sep-Oct, pp. 104-118

doi: https://doi.org/10.15407/ubj96.05.104

Antibacterial action of novel zeolite-based compositions depends upon doping with Ag(+) and Сu(2+) cations

N. O. Manko1*, O. O. Ilkov2, O. Yu. Klyuchivska1, V. O. Vasylechko3,4,
V. V. Sydorchuk5, N. P. Kovalska6, O. I. Kostiv3, S. R. Bagday3,
A. V. Zelinskiy3, O. M. Gromyko7, N. V. Skrypchenko8,
Yа. M. Kalychak3, R. S. Stoika1

1Department of Regulation of Cell Proliferation and Apoptosis,
Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv;
2Halychpharm, Lviv, Ukraine;
3Faculty of Chemistry, Ivan Franko National University of Lviv, Lviv, Ukraine;
4Department of Food Technology, Lviv University of Trade and Economics, Lviv, Ukraine;
5Department of Heterogeneous Catalytic Oxidation Processes, Institute of Sorption
and Problems of Endoecology, National Academy of Sciences of Ukraine, Kyiv;
6Department of Pharmacognosy and Botany, Bogomolets National
Medical University, Kyiv, Ukraine;
7Faculty of Biology, Ivan Franko National University of Lviv, Lviv, Ukraine;
8Department of Fruit Plants Acclimatization, M. M. Gryshko National Botanical Garden,
National Academy of Sciences of Ukraine, Kyiv;
*e-mail: mankonazarcb@gmail.com

Received: 01 July 2024; Revised: 23 August 2024;
Accepted: 07 October 2024; Available on-line: 28 October 2024

Recently, there is a growing interest to exploration of sorption and catalytic properties of solid nanomaterials, in particular natural zeolites, as well as to study of their antimicrobial effects with the aim of potential using them as a principal component of disinfection and degassing remedies. The purpose of this work was to study the antimicrobial action of compositions based on the Transcarpathian clinoptilolite (CL) doped with Ag+ and Сu2+ cations or Ag microparticles (MPs). These compositions were subjected to mechanochemical modification in ethanol medium and with the addition of plant (Actinidia arguta) extract used as an antioxidant. Mechanochemical treatment (MChT) of all forms of CL MPs led to their grinding which caused better contact of CL with bacterial cells, while an increased content of larger pores improved their access to the active sites on the surface of the CL MPs. Treatment of CL samples with metallic silver used as a dopant with the help of the extract of Actinidia arguta plant did not increase the antibacterial activity regardless of treatment time. Treatment of AgNO3 with ethanol slightly increased the antibacterial action of the CL MPs towards Gram-positive bacteria and decreased it towards Gram-negative bacteria. The CL samples doped with copper and treated with ethanol and plant (Actinidia arguta) extract demonstrated comparable toxic action towards Bacillus subtilis regardless of grinding conditions. While such a treatment caused a significant decrease in the antibacterial activity towards Staphylococcus aureus and Pseudomonas aeruginosa strains, compared to the action of samples that were not treated with that plant extract. To address the potential biochemical mechanisms of the antibacterial action of the created zeolite-based compositions, their influence on generation of the reactive oxygen species (ROS) was studied using diphenylpicrylhydrazyl (DPH) fluorescent dye. Most versions of the CL composites demonstrated time-dependent antioxidant effect comparable with the effect of the ascorbic acid used as a positive control. Thus, the ROS generation is not the mechanism that is responsible for the antibacterial action of the created CL-based compositions. Probably, that action is explained by the peculiarities of interaction of doped CL microparticles with the surface of the bacterial cells.

Keywords: , , ,


References:

  1. Pavlović J, Hrenović J, Povrenović D, Rajić N. Advances in the Applications of Clinoptilolite-Rich Tuffs. Materials (Basel). 2024;17(6):1306. PubMed, PubMedCentral, CrossRef
  2. Jang YJ, Kim K, Tsay OG, Atwood DA, Churchill DG. Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chem Rev. 2015;115(24):PR1-PR76. PubMed, CrossRef
  3.  Singh VV, Jurado-Sánchez B, Sattayasamitsathit S, Orozco J, Li JX, Galarnyk M, Fedorak Y, Wang J. Multifunctional Silver-Exchanged Zeolite Micromotors for Catalytic Detoxification of Chemical and Biological Threats. Adv Funct Mater. 2015;25(14):2147-2155. CrossRef
  4. Dolaberidze NM, Tsitsishvili VG, Khutsishvili BT, Mirdzveli NA, Nijaradze MO, Amiridze ZG, Burjanadze MN. Silver- and Zinc-Containing Bactericidal Phillipsites. New Mater Comp Appl. 2018;2(3):247-260.
  5. Pourliotis K, Karatzia MA, Florou-Paneri P, Katsoulos PD, Karatzias H. Effects of dietary inclusion of clinoptilolite in colostrum and milk of dairy calves on absorption of antibodies against Escherichia coli and the incidence of diarrhea. Anim Feed Sci Technol. 2012;172(3-4):136-140. CrossRef
  6. Rossainz-Castro LG, De-La-Rosa-Gómez I, Olguín MT, Alcántara-Díaz D. Comparison between silver- and copper-modified zeolite-rich tuffs as microbicide agents for Escherichia coli and Candida albicans. J Environ Manage. 2016;183(Pt 3):763-770. PubMed, CrossRef
  7. Milenkovic J, Hrenovic J, Matijasevic D, Niksic M, Rajic N. Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environ Sci Pollut Res Int. 2017;24(25):20273-20281. PubMed, CrossRef
  8. Farina M, Brundu A, Bonferoni MC, Juliano C, Rassu G, Gavini E, Cerri G. Antibacterial activity of Na-clinoptilolite against Helicobacter pylori: in-vitro tests, synergistic effect with amoxicillin and stability of the antibiotic formulated with the zeolite. Micropor Mesopor Mat. 2019;288:109592. CrossRef
  9. Kraljević Pavelić S, Simović Medica J, Gumbarević D, Filošević A, Pržulj N, Pavelić K. Critical Review on Zeolite Clinoptilolite Safety and Medical Applications in vivo. Front Pharmacol. 2018;9:1350. PubMed, PubMedCentral, CrossRef
  10. Rainer DN, Morris RE. New avenues for mechanochemistry in zeolite science. Dalton Trans. 2021;50(26):8995-9009. PubMed, PubMedCentral, CrossRef
  11. 11. Patents WO 2010018418 A1. Lelas A, Cepanac I. Formulation based on micronized clinoptilolite as therapeutic agent providing highly bioavailable silicon. РСТ/HR2008/000030 12.08.2008. – 18.02.2010.
  12. De Gennaro B. Surface modification of zeolites for environmental applications. In: Mercurio M, Sarkar B, Langella A (eds). Modified Clay and Zeolite Nanocomposite Materials. Environmental and Pharmaceutical Applications Micro and Nano Technologies. Elsevier, 2019: 57-85. CrossRef
  13. Tomazović B, Ćeranic T, Sijarić G. The properties of the NH4-clinoptilolite. Part 1. Zeolites. 1996;16(4):301-308. CrossRef
  14. Tomazović B, Ćeranić T, Sijarić G. The properties of the NH4-clinoptilolite. Part 2. Zeolites. 1996;16(4);309-312. CrossRef
  15. Kukobat R, Škrbić R, Massiani P, Baghdad K, Launay F, Sarno M, Cirillo C, Senatore A, Salčin E, Atlagić GS. Thermal and structural stability of microporous natural clinoptilolite zeolite. Micropor Mesopor Mater. 2022;341:112101. CrossRef
  16. Tsitsishvili GV, Andronikashvili TG, Kirov GR, Filizova LD. Natural Zeolites. Ellis Horwood Ltd: Chichester: West Sussex, 1992. 295 p.
  17. Vyviurska O, Vasylechko V, Gryshchouk G, Kalychak Y, Zakordonskiy V. Use of Na-modified clinoptilolite for the removal of terbium ions from aqueous solution. Chem Met Alloy. 2012;5(3/4):136-141. CrossRef
  18. Zakordonskiy V, Vasylechko V, Staszczuk P, Gryshchouk G. Water thermodesorption and adsorption properties of the Transcarpathian zeolites. Visnyk Lviv Univ Ser Chem. 2004; 44: 247-256. (In Ukrainian).
  19. Vasylechko VO, Gryshchouk GV, Zakordonskiy VP, Vyviurska O, Pashuk AV. A solid-phase extraction method using Transcarpathian clinoptilolite for preconcentration of trace amounts of terbium in water samples. Chem Cent J. 2015;9:45. PubMed, PubMedCentral, CrossRef
  20. Vasylechko VO, Gryschouk GV, Zakordonskiy VP, Patsay IO, Len’ NV, Vyviurska OA. Sorption of terbium on Transcarpathian clinoptilolite. Micropor Mesopor Mater. 2013;167:155-161. CrossRef
  21. Auerbach SM, Kathleen A, Carrado KA, Dutta PK. Handbook of zeolite Science and Technology. New York: CRC Press, 2003. 1204 p. CrossRef
  22. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific Opinion on the safety and efficacy of clinoptilolite of sedimentary origin for all animal species. EFSA J. 2013;11(1):3039. CrossRef
  23.  Kahramanova XT. Zeolite is biologically active mineral. In: Natural zeolite in medicine. FE Sadikhova, MN Veliyeva, XT Kahramanova, XI Ibadova (eds). Bourgas: SWB, 2010, p. 10-35.
  24. Izmirova N, Aleksiev B, Djourova E, Blagoeva P, Gendjev Z, Mircheva Tz, Pressiyanov D, Minev L, Bozhkova T, Uzunov P, Tomova I, Baeva M, Boyanova A, Todorov T, Petrova R. 32-P-12-Clinoptilolite and the possibilities for its application in medicine. Stud Surf Sci Catal. 2001;135:375. CrossRef
  25. Flowers JL, Lonky SA, Deitsch EJ. Clinical evidence supporting the use of an activated clinoptilolite suspension as an agent to increase urinary excretion of toxic heavy metals. Nutr Dietary Suppl. 2009;1:11-18. CrossRef
  26. Vasylechko VO, Fedorenko VO, Gromyko OM, Gryshchouk GV, Kalychak YM, Zaporozhets OA, Lototska MT. Solid phase extractive preconcentration of silver from aqueous samples and antimicrobial properties of the clinoptilolite–Ag composite. Adsorp Sci Technol. 2017;35(7-8): 602-611. CrossRef
  27. Vasylechko VO, Fedorenko VO, Gromyko OM, Gryshchouk GV, Kalychak YM, Tistechok SI, Us IL, Tupys A. Sorption Preconcentration of Silver for Atomic Absorption Analysis and Antibacterial Properties of the Acid-modified Clinoptilolite – Ag composite. Methods Objects Chem Anal. 2020; 15(2):73-82. CrossRef
  28. Vasylechko V, Fedorenko V, Gromyko O, Gryshchouk G, Kalychak Y, Tistechok S, Us I, Tupys A. A novel solid-phase extraction method for preconcentration of silver and antimicrobial properties of the Na-clinoptilolite–Ag composite. Mater TodayProc. 2021;35(4):548-551. CrossRef
  29. Patrylak LK, Yakovenko AV, Nizhnik BO, Pertko OP, Povazhnyi VA, Kamenskyh DS, Melnychuk OV. Natural zeolites modified with silver nanoparticles as promising sorbents with antibacterial properties / In: Nanoelectronics, Nanooptics, Nanochemistry and Nanobiotechnology, and Their Applications. NANO 2022. O Fesenko, L Yatsenko (eds). Springer Proceedings in Physics. Springer, 2023; 297: 87–98. CrossRef
  30. Gromyko OM, Vasylechko VO, Gryshchouk GV, Roman II, Kalychak YaM, Fedorenko VO, Bagday SR. Antimicrobial activity of transcarpathian clinoptilolite modified with salts of transition metals / Book of Abstracts of International research and practice conference “Nanotechnology and nanomaterials” (NANO-2022). K: LLC APF POLYGRAPH SERVICE, 2022; 54.
  31. Vasylechko VO, Klyuchivska OYu, Manko NO, Gryshchouk GV, Kalychak YaM, Zhmurko II, Stoika RS. Novel nanocomposite materials of silver – exchanged clinoptilolite with pre concentration of Ag(NH3)2+ in water possess enhanced anticancer action. Appl Nanosci. 2020;10(12):4869-4878. CrossRef
  32. Paryzhak SYa, Dumych TI, Klyuchivska OYu, Manko NO, Gryshchouk GV, Vasylechko VO, Stoika RS. Silver doping of clinoptilolite particles enhances their effects on immunocompetent mammalian cells and inhibition of Candida albicans fungi. Appl Nanosci. 2023;13:4817-4826. CrossRef
  33. Ivasechko I, Klyuchivska O, Vasylechko V, Vyviurska O, Kalychak Ya, Stoika R. Influence of Transition Metal-Doped Clinoptilolite on Tumor Cell Viability: A Correlation with Intercellular Contact Density. 2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP), Bratislava, Slovakia, 2023, pp. NRA02-1-NRA02-7. CrossRef
  34. Znak ZO, Kornii SA, Mashtaler AS, Zin OI. Production of Nanoporous Zeolites Modified by Silver Ions with Antibacterial Properties. Mater Sci. 2021;56:536-543. CrossRef
  35. Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11: 371-384. CrossRef
  36. Vasylechko VO, Cryshchouk GV, Lebedynets LO, Kuzma YuB, Vasylechko LO, Zakordonskiy VP. Adsorption of Copper on Transcarpathian Сlinoptilolite. Adsorp Sci Technol. 1999;17(2):125-134. CrossRef
  37. Tarasevich YI, Polyakov VE, Penchov VZ, Kirov GN, Minchev KI, Polyakov IG, Badekba LI. Ion-exchange qualities and structural features of clinoptilolites of various deposits. Khim Tekhnol Vody. 1991;13:132-140. (In Russian).
  38. “Sophora flower-bud” from the European Pharmacopoeia / Strasbourg: European Department for the Quality of Medicines, 10.0th ed. 2020, 1628 p.
  39. Akselrud L, GrinY. WinCSD: software package for crystallographic calculations. J Appl Cryst. 2014;47:803-805. CrossRef
  40. Sydorchuk V, Vasylechko V, Khyzhun O, Gryshchouk G, Khalameida S, Vasylechko L. Effect of high-energy milling on the structure, some physicochemical and photocatalytic properties of clinoptilolite. Appl Catal A Gen. 2021;610:117930. CrossRef
  41. Manko NO, Vasylechko VO, Kostiv OI, Kluchivska OYu, Sydorchuk VV, Ilkov OO, Bagday SR, Zelinskiy AV, Gromyko OM, Kalychak YaM, Stoika RS. Study of antibacterial effects of transcarpathian clinoptilolite compositions modified by different chemical ways. Studia Biologica. 2024;18(2):3-19. CrossRef
  42. Al-Zahrani S, Astudillo-Calderón S, Pintos B, Pérez-Urria E, Manzanera JA, Martín L, Gomez-Garay A. Role of Synthetic Plant Extracts on the Production of Silver-Derived Nanoparticles. Plants (Basel). 2021;10(8):1671. PubMed, PubMedCentral, CrossRef
  43. Khromykh NO, Lykholat YV, Didur OO, Sklyar TV, Davydov VR, Lavrentievа KV, Lykholat TY. Phytochemical profiles, antioxidant and antimicrobial activity of Actinidia polygama and A. arguta fruits and leaves. BiosystDivers. 2022;30(1):39-45. CrossRef
  44. Fahimirad S, Ajalloueian F, Ghorbanpour M. Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol Environ Saf. 2019;168:260-278. PubMed, CrossRef
  45. Doan Thi TU, Nguyen TT, Thi YD, Ta Thi KH, Phan BT, Pham KN. Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv. 2020;10(40):23899-23907. PubMed, PubMedCentral, CrossRef
  46. Halo M, Ferrari AM, Berlier G, Miletto I, Casassa S. Experimental and first-principles IR characterization of quercetin adsorbed on a silica surface. Theor Chem Acc. 2016;135:123. CrossRef
  47. Charkhi A, Kazemian H, Kazemei M. Optimized experimental design for natural clinoptilolite zeolite ball milling to produce nano powders. Powder Technol. 2010;203(2):389-396. CrossRef
  48. Poojari C, Wilkosz N, Lira RB, Dimova R, Jurkiewicz P, Petka R, Kepczynski M, Róg T. Behavior of the DPH fluorescence probe in membranes perturbed by drugs. Chem Phys Lipids. 2019;223:104784. PubMed, CrossRef
  49. Hu YK, Kim SJ, Jang CS, Lim SD. Antioxidant Activity Analysis of Native Actinidia arguta Cultivars. Int J Mol Sci. 2024;25(3):1505. PubMed, PubMedCentral, CrossRef
  50. Asatiani MD, Elisashvili VI, Wasser SP, Reznick AZ, Nevo E. Free-radical scavenging activity of submerged mycelium extracts from higher basidiomycetes mushrooms. Biosci Biotechnol Biochem. 2007;71(12):3090-3092. PubMed, CrossRef
  51. Kovalska N, Karpiuk U, Minarchenko V, Cholak I, Zaimenko N, Skrypchenko N, Liu D. Comparative Analysis of the Content of Sum of Hydroxycinnamic Acids from Leaves of Actinidia arguta Lindl. Collected in Ukraine and China. J Chem. 2023;2023(1):1-7. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.