Ukr.Biochem.J. 2024; Volume 96, Issue 5, Sep-Oct, pp. 44-54

doi: https://doi.org/10.15407/ubj96.05.044

Bacteriophage–derived double-stranded RNA (larifan) exerts variable effects on human blood monocytes depending on age and sex of donors

R. Dovhyi1*, M. Rudyk1, T. Serhiichuk1, Yu. Yumyna1,
A. Dvukhriadkina1, K. Ostrovska1, D. Pjanova2, L. Skivka1

1ESC “Institute of Biology and Medicine”,
Taras Shevchenko National University of Kyiv, Ukraine;
2Latvian Biomedical Research and Study Centre, Riga, Latvia;
*e-mail: roman_dovhyi@knu.ua

Received: 26 July 2024; Revised: 17 September 2024;
Accepted: 07 October 2024; Available on-line: 28 October 2024

To date, great attention is paid to sex and age differences in the therapeutic effectiveness of drugs, including those that impact the immune system. Bacteriophage-derived dsRNA is the main component of the medicinal product Larifan, which exhibits interferonogenic activity. This study aimed to estimate the effect of Larifan on the activation status of human peripheral blood monocytes collected from donors of different ages and sex. Blood samples were obtained from the healthy volunteers, divided into 4 groups: young men and young women aged from 20 to 39 years, aged men and aged women from 54 to 69 years old. EDTA-anticoagulated blood samples were exposed to 200 μg/ml Larifan for 30 min, cells were washed and treated to study phagocytic index, ROS generation and expression of phenotypic markers. Only live monocytes selected by flow cytometry were included in the analysis. It was shown that monocytes from young as well as from aged females turned out to be quite inert to the treatment with Larifan. Monocytes from young males after the treatment demonstrated a minor decrease in phagocytic activity and significant down-regulation of ROS generation. Monocytes from aged adults showed clear sex-based differences in the basal cell phenotype. Thus, compared to monocytes from women, the monocytes from men over 50 after the treatment with Larifan showed decreased phagocytic activity and CD86 expression along with increased CD206 expression. Taken together, these results indicate the need for further studies of Larifan focused on developing personalized treatment depending on the age and sex of an individual.

Keywords: , , , , ,


References:

  1. Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, Bigley V, Flavell RA, Gilroy DW, Asquith B, Macallan D, Yona S. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 20173;214(7):1913-1923. PubMed, PubMedCentral, CrossRef
  2. Zhao J, Andreev I, Silva HM. Resident tissue macrophages: Key coordinators of tissue homeostasis beyond immunity. Sci Immunol. 2024;9(94):eadd1967. PubMed, CrossRef
  3. Park MD, Silvin A, Ginhoux F, Merad M. Macrophages in health and disease. Cell. 2022;185(23):4259-4279. PubMed, PubMedCentral, CrossRef
  4. Dowling JW, Forero A. Beyond Good and Evil: Molecular Mechanisms of Type I and III IFN Functions. J Immunol. 2022;208(2):247-256. PubMed, CrossRef
  5. Znaidia M, Demeret C, van der Werf S, Komarova AV. Characterization of SARS-CoV-2 Evasion: Interferon Pathway and Therapeutic Options. Viruses. 2022;14(6):1247. PubMed, PubMedCentral, CrossRef
  6. Nazerian Y, Ghasemi M, Yassaghi Y, Nazerian A, Hashemi SM. Role of SARS-CoV-2-induced cytokine storm in multi-organ failure: Molecular pathways and potential therapeutic options. Int Immunopharmacol. 2022;113(Pt B):109428. PubMed, PubMedCentral, CrossRef
  7. Sun M, Yu Z, Luo M, Li B, Pan Z, Ma J, Yao H. Screening Host Antiviral Proteins under the Enhanced Immune Responses Induced by a Variant Strain of Porcine Epidemic Diarrhea Virus. Microbiol Spectr. 2022;10(4):e0066122. PubMed, PubMedCentral, CrossRef
  8. Vaivode K, Verhovcova I, Skrastina D, Petrovska R, Kreismane M, Lapse D, Kalnina Z, Salmina K, Rubene D, Pjanova D. Bacteriophage-Derived Double-Stranded RNA Exerts Anti-SARS-CoV-2 Activity In Vitro and in Golden Syrian Hamsters In Vivo. Pharmaceuticals (Basel). 2022;15(9):1053. PubMed, PubMedCentral, CrossRef
  9. Hurmach Y, Rudyk M, Svyatetska V, Senchylo N, Skachkova O, Pjanova D, Vaivode K, Skivka L. The effect of intranasally administered TLR3 agonist larifan on metabolic profile of microglial cells in rat with C6 glioma. Ukr Biochem J. 2018;90(6):110-119. CrossRef
  10. Pjanova D, Hurmach Y, Rudyk M, Khranovska N, Skachkova O, Verhovcova I, Skivka L. Effect of Bacteriophage-Derived Double Stranded RNA on Rat Peritoneal Macrophages and Microglia in Normoxia and Hypoxia. Proc Latv Acad Sci B Nat Exact Appl Sci. 2021;75(5):343-349. CrossRef
  11. Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol. 2024;20(1):37-55. PubMed, CrossRef
  12. Peckham H, de Gruijter NM, Raine C, Radziszewska A, Ciurtin C, Wedderburn LR, Rosser EC, Webb K, Deakin CT. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun. 2020;11(1):6317. PubMed, PubMedCentral, CrossRef
  13. Bereshchenko O, Bruscoli S, Riccardi C. Glucocorticoids, Sex Hormones, and Immunity. Front Immunol. 2018;9:1332. PubMed, PubMedCentral, CrossRef
  14. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626-638. PubMed, CrossRef
  15. Klein SL, Morgan R. The impact of sex and gender on immunotherapy outcomes. Biol Sex Differ. 2020;11(1):24. PubMed, PubMedCentral, CrossRef
  16. Cisneros B, García-Aguirre I, Unzueta J, Arrieta-Cruz I, González-Morales O, Domínguez-Larrieta JM, Tamez-González A, Leyva-Gómez G, Magaña JJ. Immune system modulation in aging: Molecular mechanisms and therapeutic targets. Front Immunol. 2022;13:1059173. PubMed, PubMedCentral, CrossRef
  17. Hickman E, Smyth T, Cobos-Uribe C, Immormino R, Rebuli ME, Moran T, Alexis NE, Jaspers I. Expanded characterization of in vitro polarized M0, M1, and M2 human monocyte-derived macrophages: Bioenergetic and secreted mediator profiles. PLoS One. 2023 Mar 2;18(3):e0279037. PubMed, PubMedCentral, CrossRef
  18. Seyrantepe V, Iannello A, Liang F, Kanshin E, Jayanth P, Samarani S, Szewczuk MR, Ahmad A, Pshezhetsky AV. Regulation of phagocytosis in macrophages by neuraminidase 1. J Biol Chem. 2010;285(1):206-215. PubMed, PubMedCentral, CrossRef
  19. Cho Y, Cho S. Hemocyte-hemocyte adhesion by granulocytes is associated with cellular immunity in the cricket, Gryllus bimaculatus. Sci Rep. 2019;9(1):18066. PubMed, PubMedCentral, CrossRef
  20. Rudyk M, Fedorchuk O, Susak Y, Nowicky Y, Skivka L. Introduction of antineoplastic drug NSC631570 in an inpatient and outpatient setting: Comparative evaluation of biological effects. Asian J Pharmac Sci. 2016;11(2):308-317. CrossRef
  21. Zhao Y, Gao C, Liu L, Wang L, Song Z. The development and function of human monocyte-derived dendritic cells regulated by metabolic reprogramming. J Leukoc Biol. 2023;114(3):212-222. PubMed, CrossRef
  22. Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol. 2017;17(6):349-362. PubMed, CrossRef
  23. Sreejit G, Fleetwood AJ, Murphy AJ, Nagareddy PR. Origins and diversity of macrophages in health and disease. Clin Transl Immunology. 2020;9(12):e1222. PubMed, PubMedCentral, CrossRef
  24.  Vanderbeke L, Van Mol P, Van Herck Y, De Smet F, Humblet-Baron S, Martinod K, Antoranz A, Arijs I, Boeckx B, Bosisio FM, Casaer M, Dauwe D, De Wever W, Dooms C, Dreesen E, Emmaneel A, Filtjens J, Gouwy M, Gunst J, Hermans G, Jansen S, Lagrou K, Liston A, Lorent N, Meersseman P, Mercier T, Neyts J, Odent J, Panovska D, Penttila PA, Pollet E, Proost P, Qian J, Quintelier K, Raes J, Rex S, Saeys Y, Sprooten J, Tejpar S, Testelmans D, Thevissen K, Van Buyten T, Vandenhaute J, Van Gassen S, Velásquez Pereira LC, Vos R, Weynand B, Wilmer A, Yserbyt J, Garg AD, Matthys P, Wouters C, Lambrechts D, Wauters E, Wauters J. Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity. Nat Commun. 2021;12(1):4117. PubMed, PubMedCentral, CrossRef
  25. Nelson LH, Warden S, Lenz KM. Sex differences in microglial phagocytosis in the neonatal hippocampus. Brain Behav Immun. 2017;64:11-22 PubMed, PubMedCentral, CrossRef
  26. Jabeen S, Landazuri J, Nagvenkar S, Czuj B, Maghsoudi A, Javdan M, Entezari M, Lockshin RA, Zakeri Z. TLR4 sex dimorphism correlates with sex dimorphic phagocytosis in primary macrophages. Ital J Gender-Specific Med. 2020;6(3):100-106. CrossRef
  27. Sondell K, Athlin L, Bjermer L, Eriksson S, Norberg B. The role of sex and age in yeast cell phagocytosis by monocytes from healthy blood donors. Mech Ageing Dev. 1990;51(1):55-61. PubMed, CrossRef
  28. Williams H, Mack C, Baraz R, Marimuthu R, Naralashetty S, Li S, Medbury H. Monocyte Differentiation and Heterogeneity: Inter-Subset and Interindividual Differences. Int J Mol Sci. 2023;24(10):8757. PubMed, PubMedCentral, CrossRef
  29. Xuan KM, Bakar NA, Fadzli Mustaffa KM, Azlan M. The role of monocytes in malaria infection. Cent Eur J Immunol. 2023;48(1):54-62. PubMed, PubMedCentral, CrossRef
  30. Gomes NE, Brunialti MK, Mendes ME, Freudenberg M, Galanos C, Salomão R. Lipopolysaccharide-induced expression of cell surface receptors and cell activation of neutrophils and monocytes in whole human blood. Braz J Med Biol Res. 2010;43(9):853-858. PubMed, CrossRef
  31. Hackel D, Pflücke D, Neumann A, Viebahn J, Mousa S, Wischmeyer E, Roewer N, Brack A, Rittner HL. The connection of monocytes and reactive oxygen species in pain. PLoS One. 2013;8(5):e63564. PubMed, PubMedCentral, CrossRef
  32. Khalifa AR, Abdel-Rahman EA, Mahmoud AM, Ali MH, Noureldin M, Saber SH, Mohsen M, Ali SS. Sex-specific differences in mitochondria biogenesis, morphology, respiratory function, and ROS homeostasis in young mouse heart and brain. Physiol Rep. 2017;5(6):e13125. PubMed, PubMedCentral, CrossRef
  33. Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017;21(5):1024-1032. PubMed, PubMedCentral, CrossRef
  34. Watanabe K, Watanabe T, Otaki Y, Murase T, Nakamura T, Kato S, Tamura H, Nishiyama S, Takahashi H, Arimoto T, Watanabe M. Gender Differences in the Impact of Plasma Xanthine Oxidoreductase Activity on Coronary Artery Spasm. J Clin Med. 2021;10(23):5550. PubMed, PubMedCentral, CrossRef
  35. Martínez de Toda I, González-Sánchez M, Díaz-Del Cerro E, Valera G, Carracedo J, Guerra-Pérez N. Sex differences in markers of oxidation and inflammation. Implications for ageing. Mech Ageing Dev. 2023;211:111797. PubMed, CrossRef
  36. Wieczfinska J, Kleniewska P, Pawliczak R. Oxidative Stress-Related Mechanisms in SARS-CoV-2 Infections. Oxid Med Cell Longev. 2022;2022:5589089. PubMed, PubMedCentral, CrossRef
  37. Dovhyi R, Rudyk M, Hurmach Ye, Serhiichuk T, Yumyna Yu, Dvukhriadkina A, Ostrovska K, Pjanova D, Skivka L. Polarized activation of human peripheral blood phagocytes by bacteriophage–derived double-stranded RNA (Larifan) in vitro. Biotechnol Acta. 2023;16(6):69-75. CrossRef
  38. Sauce D, Dong Y, Campillo-Gimenez L, Casulli S, Bayard C, Autran B, Boddaert J, Appay V, Elbim C. Reduced Oxidative Burst by Primed Neutrophils in the Elderly Individuals Is Associated With Increased Levels of the CD16bright/CD62Ldim Immunosuppressive Subset. J Gerontol A Biol Sci Med Sci. 2017;72(2):163-172. PubMed, CrossRef
  39. Ginaldi L, De Martinis M. (2018). Phenotypic and Functional Changes of Circulating Monocytes in Elderly. In: Fulop T, Franceschi C, Hirokawa K, Pawelec G. (eds) Handbook of Immunosenescence. Springer, Cham.  CrossRef
  40. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363-383. PubMed, CrossRef
  41. Maldonado E, Morales-Pison S, Urbina F, Solari A. Aging Hallmarks and the Role of Oxidative Stress. Antioxidants (Basel). 2023;12(3):651. PubMed, PubMedCentral, CrossRef
  42. Pinchuk I, Weber D, Kochlik B, Stuetz W, Toussaint O, Debacq-Chainiaux F, Dollé MET, Jansen EHJM, Gonos ES, Sikora E, Breusing N, Gradinaru D, Sindlinger T, Moreno-Villanueva M, Bürkle A, Grune T, Lichtenberg D. Gender- and age-dependencies of oxidative stress, as detected based on the steady state concentrations of different biomarkers in the MARK-AGE study. Redox Biol. 2019;24:101204. PubMed, PubMedCentral, CrossRef
  43. Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. The Role of Reactive Species on Innate Immunity. Vaccines (Basel). 2022;10(10):1735. PubMed, PubMedCentral, CrossRef
  44. Vishnyakova P, Poltavets A, Karpulevich E, Maznina A, Vtorushina V, Mikhaleva L, Kananykhina E, Lokhonina A, Kovalchuk S, Makarov A, Elchaninov A, Sukhikh G, Fatkhudinov T. The response of two polar monocyte subsets to inflammation. Biomed Pharmacother. 2021;139:111614. PubMed, CrossRef
  45. Borst K, Frenz T, Spanier J, Tegtmeyer PK, Chhatbar C, Skerra J, Ghita L, Namineni S, Lienenklaus S, Köster M, Heikenwaelder M, Sutter G, Kalinke U. Type I interferon receptor signaling delays Kupffer cell replenishment during acute fulminant viral hepatitis. J Hepatol. 2018;68(4):682-690. PubMed, CrossRef
  46. Satoh N, Shimatsu A, Himeno A, Sasaki Y, Yamakage H, Yamada K, Suganami T, Ogawa Y. Unbalanced M1/M2 phenotype of peripheral blood monocytes in obese diabetic patients: effect of pioglitazone. Diabetes Care. 2010;33(1):e7. PubMed, CrossRef
  47. Zhang ML, Jiang YF, Wang XR, Ding LL, Wang HJ, Meng QQ, Gao PJ. Different phenotypes of monocytes in patients with new-onset mild acute pancreatitis. World J Gastroenterol. 2017;23(8):1477-1488. PubMed, PubMedCentral, CrossRef
  48. Gazi U, Martinez-Pomares L. Influence of the mannose receptor in host immune responses. Immunobiology. 2009;214(7):554-561. PubMed, CrossRef
  49. van der Zande HJP, Nitsche D, Schlautmann L, Guigas B, Burgdorf S. The Mannose Receptor: From Endocytic Receptor and Biomarker to Regulator of (Meta)Inflammation. Front Immunol. 2021;12:765034. PubMed, PubMedCentral, CrossRef
  50. Trombetta AC, Soldano S, Contini P, Tomatis V, Ruaro B, Paolino S, Brizzolara R, Montagna P, Sulli A, Pizzorni C, Smith V, Cutolo M. A circulating cell population showing both M1 and M2 monocyte/macrophage surface markers characterizes systemic sclerosis patients with lung involvement. Respir Res. 2018;19(1):186. PubMed, PubMedCentral, CrossRef
  51. Kang S, Kumanogoh A. The spectrum of macrophage activation by immunometabolism. Int Immunol. 2020;32(7):467-473. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.