Ukr.Biochem.J. 2024; Volume 96, Issue 5, Sep-Oct, pp. 5-20
doi: https://doi.org/10.15407/ubj96.05.005
Heparin-binding EGF-like growth factor: mechanisms of biological activity and potential therapeutic applications
L. M. Dronko1, T. M. Lutsenko1*, N. V. Korotkevych2,
I. O. Vovk2, D. A. Zhukova2, S. I. Romaniuk2,
A. A. Siromolot2, A. J. Labyntsev2, D. V. Kolybo2
1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv;
2Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
*e-mail: lutsenko.tetiana@lll.kpi.ua
Received: 06 August 2024; Revised: 18 September 2024;
Accepted: 07 October 2024; Available on-line: 28 October 2024
The diphtheria toxin receptor on sensitive mammalian cells is known as the membrane anchored precursor of heparin-binding EGF-like growth factor (HB-EGF). When the precursor is cleaved by metalloproteinases, a soluble form (sHB-EGF) is formed that can bind to the EGF receptors, resulting in activation of signaling pathways that regulate cell proliferation, differentiation, migration, and inhibition of apoptosis. The ability of HB-EGF to cause both positive and negative consequences for organism underscores the complexity of its biological functions and the need for a nuanced understanding of its role in health and disease. In this review the data on the HB-EGF structure, biological activity, involvement in the mechanism of diphtheria toxin action, wound healing, tumor progression as well as the methods of HB-EGF delivery are summarized.
Keywords: cell proliferation, diphtheria toxin, EGF receptor, heparin-binding EGF-like growth factor, signal transduction, wound healing
References:
- Dao DT, Anez-Bustillos L, Adam RM, Puder M, Bielenberg DR. Heparin-Binding Epidermal Growth Factor-Like Growth Factor as a Critical Mediator of Tissue Repair and Regeneration. Am J Pathol. 2018;188(11):2446-2456. PubMed, PubMedCentral, CrossRef
- Dreux AC, Lamb DJ, Modjtahedi H, Ferns GA. The epidermal growth factor receptors and their family of ligands: their putative role in atherogenesis. Atherosclerosis. 2006;186(1):38-53. PubMed, CrossRef
- Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science. 1991;251(4996):936-939. PubMed, CrossRef
- Murphrey MB, Quaim L, Rahimi N, Varacallo M. Biochemistry, epidermal growth factor receptor. In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482459/ PubMed
- Chudina TO, Labintsev AJ, Romaniuk SI, Kolybo DV, Komisarenko SV. Changes in proHB-EGF expression after functional activation of the immune system cells. Ukr Biochem J. 2017;89(6):31-38. CrossRef
- Higashiyama S, Lau K, Besner GE, Abraham JA, Klagsbrun M. Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J Biol Chem. 1992;267(9):6205-6212. PubMed, CrossRef
- Vinante F, Rigo A. Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor in normal and neoplastic hematopoiesis. Toxins (Basel). 2013;5(6):1180-1201. PubMed, PubMedCentral, CrossRef
- Massagué J, Pandiella A. Membrane-anchored growth factors. Annu Rev Biochem. 1993:62:515-541.
PubMed, CrossRef - Raab G, Higashiyama S, Hetelekidis S, Abraham JA, Damm D, Ono M, Klagsbrun M. Biosynthesis and processing by phorbol ester of the cells surface-associated precursor form of heparin-binding EGF-like growth factor. Biochem Biophys Res Commun. 1994;204(2):592-597. PubMed, CrossRef
- Izumi Y, Hirata M, Hasuwa H, Iwamoto R, Umata T, Miyado K, Tamai Y, Kurisaki T, Sehara-Fujisawa A, Ohno S, Mekada E. A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J. 1998;17(24):7260-7272. PubMed, PubMedCentral, CrossRef
- Weskamp G, Cai H, Brodie TA, Higashyama S, Manova K, Ludwig T, Blobel CP. Mice lacking the metalloprotease-disintegrin MDC9 (ADAM9) have no evident major abnormalities during development or adult life. Mol Cell Biol. 2002;22(5):1537-1544. PubMed, PubMedCentral, CrossRef
- Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, Ohmoto H, Node K, Yoshino K, Ishiguro H, Asanuma H, Sanada S, Matsumura Y, Takeda H, Beppu S, Tada M, Hori M, Higashiyama S. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med. 2002;8(1):35-40. PubMed, CrossRef
- Yan Y, Shirakabe K, Werb Z. The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors. J Cell Biol. 2002;158(2):221-226. PubMed, PubMedCentral, CrossRef
- Dethlefsen SM, Raab G, Moses MA, Adam RM, Klagsbrun M, Freeman MR. Extracellular calcium influx stimulates metalloproteinase cleavage and secretion of heparin-binding EGF-like growth factor independently of protein kinase C. J Cell Biochem. 1998;69(2):143-153. PubMed, CrossRef
- Goishi K, Higashiyama S, Klagsbrun M, Nakano N, Umata T, Ishikawa M, Mekada E, Taniguchi N. Phorbol ester induces the rapid processing of cell surface heparin-binding EGF-like growth factor: conversion from juxtacrine to paracrine growth factor activity. Mol Biol Cell. 1995;6(8):967-980. PubMed, PubMedCentral, CrossRef
- Takenobu H, Yamazaki A, Hirata M, Umata T, Mekada E. The stress- and inflammatory cytokine-induced ectodomain shedding of heparin-binding epidermal growth factor-like growth factor is mediated by p38 MAPK, distinct from the 12-O-tetradecanoylphorbol-13-acetate- and lysophosphatidic acid-induced signaling cascades. J Biol Chem. 2003;278(19):17255-17262. PubMed, CrossRef
- Roudabush FL, Pierce KL, Maudsley S, Khan KD, Luttrell LM. Transactivation of the EGF receptor mediates IGF-1-stimulated shc phosphorylation and ERK1/2 activation in COS-7 cells. J Biol Chem. 2000;275(29):22583-22589. PubMed, CrossRef
- Nanba D, Inoue H, Shigemi Y, Shirakata Y, Hashimoto K, Higashiyama S. An intermediary role of proHB-EGF shedding in growth factor-induced c-Myc gene expression. J Cell Physiol. 2008;214(2):465-473. PubMed, CrossRef
- Tanida S, Joh T, Itoh K, Kataoka H, Sasaki M, Ohara H, Nakazawa T, Nomura T, Kinugasa Y, Ohmoto H, Ishiguro H, Yoshino K, Higashiyama S, Itoh M. The mechanism of cleavage of EGFR ligands induced by inflammatory cytokines in gastric cancer cells. Gastroenterology. 2004;127(2):559-569.
PubMed, CrossRef - Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol. 2000;14(10):1649-1660. PubMed, CrossRef
- Uchiyama-Tanaka Y, Matsubara H, Nozawa Y, Murasawa S, Mori Y, Kosaki A, Maruyama K, Masaki H, Shibasaki Y, Fujiyama S, Nose A, Iba O, Hasagawa T, Tateishi E, Higashiyama S, Iwasaka T. Angiotensin II signaling and HB-EGF shedding via metalloproteinase in glomerular mesangial cells. Kidney Int. 2001;60(6):2153-2163. PubMed, CrossRef
- Higashiyama S, Iwabuki H, Morimoto C, Hieda M, Inoue H, Matsushita N. Membrane-anchored growth factors, the epidermal growth factor family: beyond receptor ligands. Cancer Sci. 2008;99(2):214-220. PubMed, PubMedCentral, CrossRef
- Naglich JG, Metherall JE, Russell DW, Eidels L. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell. 1992;69(6):1051-1061. PubMed, CrossRef
- Van Ness BG, Howard JB, Bodley JW. ADP-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J Biol Chem. 1980;255(22):10717-10720. PubMed, CrossRef
- Lord JM, Smith DC, Roberts LM. Toxin entry: how bacterial proteins get into mammalian cells. Cell Microbiol. 1999;1(2):85-91. PubMed, CrossRef
- Louie GV, Yang W, Bowman ME, Choe S. Crystal structure of the complex of diphtheria toxin with an extracellular fragment of its receptor. Mol Cell. 1997;1(1):67-78. PubMed, CrossRef
- Kolibo DV, Romanyuk SI, Radavskiy YuL, Komisarenko SV. Effect of diphtheria toxin on the viability of phagocytes and B-lymphocytes in animals sensitive and insensitive to it. Ukr Biokhim Zhurn. 2002;74(2):30-36. (In Russian). PubMed
- Higashiyama S, Nanba D. ADAM-mediated ectodomain shedding of HB-EGF in receptor cross-talk. Biochim Biophys Acta. 2005;1751(1):110-117. PubMed, CrossRef
- Nishi E, Prat A, Hospital V, Elenius K, Klagsbrun M. N-arginine dibasic convertase is a specific receptor for heparin-binding EGF-like growth factor that mediates cell migration. EMBO J. 2001;20(13):3342-3350. PubMed, PubMedCentral, CrossRef
- Nishi E, Hiraoka Y, Yoshida K, Okawa K, Kita T. Nardilysin enhances ectodomain shedding of heparin-binding epidermal growth factor-like growth factor through activation of tumor necrosis factor-alpha-converting enzyme. J Biol Chem. 2006;281(41):31164-31172. PubMed, CrossRef
- Krynina OI, Korotkevych NV, Labyntsev AJ, Romaniuk SI, Kolybo DV, Komisarenko SV. Influence of human HB-EGF secreted form on cells with different EGFR and ErbB4 quantity. Ukr Biochem J. 2019;91(5):25-33. CrossRef
- Junttila TT, Sundvall M, Määttä JA, Elenius K. Erbb4 and its isoforms: selective regulation of growth factor responses by naturally occurring receptor variants. Trends Cardiovasc Med. 2000;10(7):304-310. PubMed, CrossRef
- Zheng Y, Li X, Qian X, Wang Y, Lee JH, Xia Y, Hawke DH, Zhang G, Lyu J, Lu Z. Secreted and O-GlcNAcylated MIF binds to the human EGF receptor and inhibits its activation. Nat Cell Biol. 2015;17(10):1348-1355. PubMed, PubMedCentral, CrossRef
- Liao HW, Hsu JM, Xia W, Wang HL, Wang YN, Chang WC, Arold ST, Chou CK, Tsou PH, Yamaguchi H, Fang YF, Lee HJ, Lee HH, Tai SK, Yang MH, Morelli MP, Sen M, Ladbury JE, Chen CH, Grandis JR, Kopetz S, Hung MC. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response. J Clin Invest. 2015;125(12):4529-4543. PubMed, PubMedCentral, CrossRef
- Nanba D, Mammoto A, Hashimoto K, Higashiyama S. Proteolytic release of the carboxy-terminal fragment of proHB-EGF causes nuclear export of PLZF. J Cell Biol. 2003;163(3):489-502. PubMed, PubMedCentral, CrossRef
- Kinugasa Y, Hieda M, Hori M, Higashiyama S. The carboxyl-terminal fragment of pro-HB-EGF reverses Bcl6-mediated gene repression. J Biol Chem. 2007;282(20):14797-14806. PubMed, CrossRef
- Yeyati PL, Shaknovich R, Boterashvili S, Li J, Ball HJ, Waxman S, Nason-Burchenal K, Dmitrovsky E, Zelent A, Licht JD. Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene. 1999;18(4):925-934. PubMed, CrossRef
- McConnell MJ, Chevallier N, Berkofsky-Fessler W, Giltnane JM, Malani RB, Staudt LM, Licht JD. Growth suppression by acute promyelocytic leukemia-associated protein PLZF is mediated by repression of c-myc expression. Mol Cell Biol. 2003;23(24):9375-9388. PubMed, PubMedCentral, CrossRef
- Fernández de Mattos S, Essafi A, Soeiro I, Pietersen AM, Birkenkamp KU, Edwards CS, Martino A, Nelson BH, Francis JM, Jones MC, Brosens JJ, Coffer PJ, Lam EW. FoxO3a and BCR-ABL regulate cyclin D2 transcription through a STAT5/BCL6-dependent mechanism. Mol Cell Biol. 2004;24(22):10058-10071. PubMed, PubMedCentral, CrossRef
- Wang F, Sloss C, Zhang X, Lee SW, Cusack JC. Membrane-bound heparin-binding epidermal growth factor like growth factor regulates E-cadherin expression in pancreatic carcinoma cells. Cancer Res. 2007;67(18):8486-8493. PubMed, CrossRef
- Alroy I, Yarden Y. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett. 1997;410(1):83-86. PubMed, CrossRef
- Muthuswamy SK, Gilman M, Brugge JS. Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol Cell Biol. 1999;19(10):6845-6857. PubMed, PubMedCentral, CrossRef
- Iwamoto R, Handa K, Mekada E. Contact-dependent growth inhibition and apoptosis of epidermal growth factor (EGF) receptor-expressing cells by the membrane-anchored form of heparin-binding EGF-like growth factor. J Biol Chem. 1999;274(36):25906-25912. PubMed, CrossRef
- Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem. 1999;68:965-1014. PubMed, CrossRef
- Sakuma T, Higashiyama S, Hosoe S, Hayashi S, Taniguchi N. CD9 antigen interacts with heparin-binding EGF-like growth factor through its heparin-binding domain. J Biochem. 1997;122(2):474-480. PubMed, CrossRef
- Maecker HT, Todd SC, Levy S. The tetraspanin superfamily: molecular facilitators. FASEB J. 1997;11(6):428-442. PubMed, CrossRef
- Lagaudrière-Gesbert C, Le Naour F, Lebel-Binay S, Billard M, Lemichez E, Boquet P, Boucheix C, Conjeaud H, Rubinstein E. Functional analysis of four tetraspans, CD9, CD53, CD81, and CD82, suggests a common role in costimulation, cell adhesion, and migration: only CD9 upregulates HB-EGF activity. Cell Immunol. 1997;182(2):105-112. PubMed, CrossRef
- Nakamura K, Mitamura T, Takahashi T, Kobayashi T, Mekada E. Importance of the major extracellular domain of CD9 and the epidermal growth factor (EGF)-like domain of heparin-binding EGF-like growth factor for up-regulation of binding and activity. J Biol Chem. 2000;275(24):18284-18290. PubMed, CrossRef
- Symington BE, Takada Y, Carter WG. Interaction of integrins alpha 3 beta 1 and alpha 2 beta 1: potential role in keratinocyte intercellular adhesion. J Cell Biol. 1993;120(2):523-535. PubMed, PubMedCentral, CrossRef
- Symington BE, Carter WG. Modulation of epidermal differentiation by epiligrin and integrin alpha 3 beta 1. J Cell Sci. 1995;108(Pt 2):831-838. PubMed, CrossRef
- Harris RC, Chung E, Coffey RJ. EGF receptor ligands. Exp Cell Res. 2003;284(1):2-13. PubMed, CrossRef
- Raab G, Klagsbrun M. Heparin-binding EGF-like growth factor. Biochim Biophys Acta. 1997;1333(3):F179-F199. PubMed, CrossRef
- Higashiyama S, Abraham JA, Klagsbrun M. Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: dependence on interactions with cell surface heparan sulfate. J Cell Biol. 1993;122(4):933-940. PubMed, PubMedCentral, CrossRef
- Piepkorn M, Pittelkow MR, Cook PW. Autocrine regulation of keratinocytes: the emerging role of heparin-binding, epidermal growth factor-related growth factors. J Invest Dermatol. 1998;111(5):715-721. PubMed, CrossRef
- St John T, Meyer J, Idzerda R, Gallatin WM. Expression of CD44 confers a new adhesive phenotype on transfected cells.
Cell. 1990;60(1):45-52. PubMed, CrossRef - Takemura T, Kondo S, Homma T, Sakai M, Harris RC. The membrane-bound form of heparin-binding epidermal growth factor-like growth factor promotes survival of cultured renal epithelial cells. J Biol Chem. 1997;272(49):31036-31042. PubMed, CrossRef
- Lin J, Hutchinson L, Gaston SM, Raab G, Freeman MR. BAG-1 is a novel cytoplasmic binding partner of the membrane form of heparin-binding EGF-like growth factor: a unique role for proHB-EGF in cell survival regulation. J Biol Chem. 2001;276(32):30127-30132. PubMed, CrossRef
- Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, LaMantia C, Mourton T, Herrup K, Harris RC, et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science. 1995;269(5221):230-234. PubMed, CrossRef
- Townsend PA, Cutress RI, Sharp A, Brimmell M, Packham G. BAG-1: a multifunctional regulator of cell growth and survival. Biochim Biophys Acta. 2003;1603(2):83-98. PubMed, CrossRef
- Knee DA, Froesch BA, Nuber U, Takayama S, Reed JC. Structure-function analysis of Bag1 proteins. Effects on androgen receptor transcriptional activity. J Biol Chem. 2001;276(16):12718-12724. PubMed, CrossRef
- Hague A, Packham G, Huntley S, Shefford K, Eveson JW. Deregulated Bag-1 protein expression in human oral squamous cell carcinomas and lymph node metastases. J Pathol. 2002;197(1):60-71. PubMed, CrossRef
- Brooke JS, Cha JH, Eidels L. Latent transforming growth factor beta-binding protein-3 and fibulin-1C interact with the extracellular domain of the heparin-binding EGF-like growth factor precursor. BMC Cell Biol. 2002;3:2. PubMed, PubMedCentral, CrossRef
- Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjöstedt E, Lundberg E, Szigyarto CA, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson A, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Ponten F, Uhlén M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014;13(2):397-406. PubMed, PubMedCentral, CrossRef
- Ito N, Kawata S, Tamura S, Kiso S, Tsushima H, Damm D, Abraham JA, Higashiyama S, Taniguchi N, Matsuzawa Y. Heparin-binding EGF-like growth factor is a potent mitogen for rat hepatocytes. Biochem Biophys Res Commun. 1994;198(1):25-31. PubMed, CrossRef
- Miyamoto S, Hirata M, Yamazaki A, Kageyama T, Hasuwa H, Mizushima H, Tanaka Y, Yagi H, Sonoda K, Kai M, Kanoh H, Nakano H, Mekada E. Heparin-binding EGF-like growth factor is a promising target for ovarian cancer therapy. Cancer Res. 2004;64(16):5720-5727. PubMed, CrossRef
- Tanaka Y, Miyamoto S, Suzuki SO, Oki E, Yagi H, Sonoda K, Yamazaki A, Mizushima H, Maehara Y, Mekada E, Nakano H. Clinical significance of heparin-binding epidermal growth factor-like growth factor and a disintegrin and metalloprotease 17 expression in human ovarian cancer. Clin Cancer Res. 2005;11(13):4783-4792. PubMed, CrossRef
- Blotnick S, Peoples GE, Freeman MR, Eberlein TJ, Klagsbrun M. T lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts: differential production and release by CD4+ and CD8+ T cells. Proc Natl Acad Sci USA. 1994;91(8):2890-2894. PubMed, PubMedCentral, CrossRef
- Chapellier B, Mark M, Messaddeq N, Calléja C, Warot X, Brocard J, Gérard C, Li M, Metzger D, Ghyselinck NB, Chambon P. Physiological and retinoid-induced proliferations of epidermis basal keratinocytes are differently controlled. EMBO J. 2002;21(13):3402-3413. PubMed, PubMedCentral, CrossRef
- Rodero MP, Khosrotehrani K. Skin wound healing modulation by macrophages. Int J Clin Exp Pathol. 2010;3(7):643-653. PubMed, PubMedCentral
- Galkin OYu, Besarab AB, Lutsenko TN. Characteristics of enzyme-linked immunosorbent assay for detection of IgG antibodies specific to Сhlamydia trachomatis heat shock protein (HSP-60). Ukr Biochem J. 2017;89(1):22-30. CrossRef
- Homma T, Sakai M, Cheng HF, Yasuda T, Coffey RJ Jr, Harris RC. Induction of heparin-binding epidermal growth factor-like growth factor mRNA in rat kidney after acute injury. J Clin Invest. 1995;96(2):1018-1025. PubMed, PubMedCentral, CrossRef
- Kang LI, Mars WM, Michalopoulos GK. Signals and cells involved in regulating liver regeneration. Cells. 2012;1(4):1261-1292. PubMed, PubMedCentral, CrossRef
- Grigorieva SM, Starosyla DB, Rybalko SL, Motronenko VV, Lutsenko TM, Galkin OY. Effect of recombinant human interleukin-7 on Pseudomonas aeruginosa wound infection. Ukr Biochem J. 2019;91(5):7-15. CrossRef
- Choi N, Kim WS, Oh SH, Sung JH. HB-EGF Improves the Hair Regenerative Potential of Adipose-Derived Stem Cells via ROS Generation and Hck Phosphorylation. Int J Mol Sci. 2019;21(1):122. PubMed, PubMedCentral, CrossRef
- Wang YJ, Dou J, Cross KP, Valerio LG Jr. Computational analysis for hepatic safety signals of constituents present in botanical extracts widely used by women in the United States for treatment of menopausal symptoms. Regul Toxicol Pharmacol. 2011;59(1):111-124. PubMed, CrossRef
- Goltsev A, Bondarovych M, Gaevska Y, Dubrava T, Babenko N, Ostankov M. Modern methods of obtaining immune dendritic cells with anti-tumor potential. Innov Biosyst Bioeng. 2024;8(1):56-76. CrossRef
- Long DL, Ulici V, Chubinskaya S, Loeser RF. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is increased in osteoarthritis and regulates chondrocyte catabolic and anabolic activities. Osteoarthritis Cartilage. 2015;23(9):1523-1531. PubMed, PubMedCentral, CrossRef
- Basal O, Atay T, Ciris İM, Baykal YB. Epidermal growth factor (EGF) promotes bone healing in surgically induced osteonecrosis of the femoral head (ONFH). Bosn J Basic Med Sci. 2018;18(4):352-360. PubMed, PubMedCentral, CrossRef
- Mehta VB, Besner GE. HB-EGF promotes angiogenesis in endothelial cells via PI3-kinase and MAPK signaling pathways. Growth Factors. 2007;25(4):253-263. PubMed, CrossRef
- Rocourt DV, Mehta VB, Besner GE. Heparin-binding EGF-like growth factor decreases inflammatory cytokine expression after intestinal ischemia/reperfusion injury. J Surg Res. 2007;139(2):269-273. PubMed, PubMedCentral, CrossRef
- Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res. 2015;49:17-45. PubMed, PubMedCentral, CrossRef
- Xu KP, Yin J, Yu FS. Lysophosphatidic acid promoting corneal epithelial wound healing by transactivation of epidermal growth factor receptor. Invest Ophthalmol Vis Sci. 2007;48(2):636-643. PubMed, PubMedCentral, CrossRef
- Soloviov S, Trokhimenko O, Polishchuk V, Pits V, Vasylenko V, Vasylenko Y, Hol I, Symchuk A, Kostiuk O. In vitro modeling of the effect of lactobacillus metabolites on the systemic response of the body in intestinal viral infection. Innov Biosyst Bioeng. 2024;8(2):38-52. CrossRef
- Galkin A, Komar A, Gorshunov Y, Besarab A, Soloviova V. New monoclonal antibodies to the prostate-specific antigen: obtaining and studying biological properties. J Microbiol Biotech Food Sci. 2019;9(3):573-577. CrossRef
- Del Angel-Mosqueda C, Gutiérrez-Puente Y, López-Lozano AP, Romero-Zavaleta RE, Mendiola-Jiménez A, Medina-De la Garza CE, Márquez-M M, De la Garza-Ramos MA. Epidermal growth factor enhances osteogenic differentiation of dental pulp stem cells in vitro. Head Face Med. 2015;11:29.
PubMed, PubMedCentral, CrossRef - Cheng WL, Feng PH, Lee KY, Chen KY, Sun WL, Van Hiep N, Luo CS, Wu SM. The Role of EREG/EGFR Pathway in Tumor Progression. Int J Mol Sci. 2021;22(23):12828. PubMed, PubMedCentral, CrossRef
This work is licensed under a Creative Commons Attribution 4.0 International License.







